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Data Acquisition for Modeling and Visualization of Vascular Tree 

William Lafayette Mondy 

ABSTRACT 

Data can be acquired from tissue’s vascular structure and used for modeling and 

visualization.  To acquire data from a vascular tree, we make its structure available for 

the gathering of data by separating it from the structures of surrounding tissues, which 

includes the capillary structure. The capillary structure contains important information, 

but, because of its size, is the most difficult to acquire data from. In this work, we look at 

methods for contrasting the vascular structure from surrounding tissues, and focus on the 

use of corrosion casting for this procedure.  We collected image data using micro-

computer tomography (micro-CT) and converted data into stereolithography models.  

Models were imported into computer aided design (CAD) software, which was used to 

further process the models in order to ensure that the necessary structures were in place 

for the recreation of the capillary structures’ relationship to targeted cell systems.  

Recreating the cell system-capillary system relationship is the reason building this model 

is so important.  It is this relationship that we seek to model so that, in the future, we can 

create designs that guide the fabrication of three-dimensional (3D) scaffolding, which 

mimic capillary patterns with supportive structure that serve as an extracellular matrix for 

3D tissue engineering.  This method had been designed to enhance a variety of 

therapeutic protocols including, but not limited to, organ and tissue repair, systemic 

disease mediation and cell/tissue transplantation therapy.   
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Chapter One 

Introduction 

Motivation for Research 

Tissue engineering is a promising field in biomedical research.  Presently, the clinical 

applications for engineered tissues are limited.  Biotech companies founded in the 1990’s 

to profit on engineering tissues for clinical use have struggled to stay in business due to 

limited success in engineering 3D tissues for transplant therapies.  Partial layers of skin 

tissues grown in culture are the only organs to date that have been successfully 

engineered and sold for use in a clinical setting.  These tissues are avascular and limited 

in their dermal thickness, which makes engineering these tissues from skin possible. 

Dermal layers contain limited vasculature structures.  The sub-dermal layer of the skin 

contains most of the vasculature found in skin and is the site for glands, nerves and hair 

follicles, none of which are produced in these in vitro skin tissue structure manufactured 

for clinical use.   

With the onset of new discoveries in stem cell development, clues are being 

discovered that will allow in the near future the large-scale production of not only stem 

cells, but all types of cells in a non-differentiating proliferative state.  Techniques are 

needed that will open pathways to the in vitro engineering of unlimited types of tissues 

for transplantation and large womb healing.  Even the engineering of organs may not be 

far away.  The successful completion of such a project will involve utilizing the 
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interdisciplinary transfer of information from molecular biology, cellular biology, 

biochemistry, chemical engineering and even electrical engineering.    

Recent studies show that the cells that compose the blood vessel wall are extremely 

predisposed to respond cytochemically, genetically, morphological and behaviorally 

when they experience a specific type stress produced by particular changes in blood flow 

(Kyriakis and Avruch 2001; Opitz, Schenke-Layland et al. 2004; Opitz, Schenke-Layland 

et al. 2007). The development of sensors that allow us to accurately measure the stress 

levels that cause cells to behave in a different but well-understood manner will lead to 

non-chemical ways of inducing changes in blood vascular diseases, such as 

arteriolosclerosis, as well as ways of increasing vascular genesis in hard-to-heal tissue, 

such as the lung, and divergently decreasing angiogenesis in tumors. It is conceivable that 

once a specific wave frequency’s tolerance is observed, mechanical wave-induced forces 

will be used not only for disease treatment but also for the engineering of vascular 

tissues, and, subsequently, organ systems for transplantation.   

An intact functional vascular network, which includes the capillary structures, is 

needed in order for researchers to have the necessary capability to grow true 3D tissue 

structures.  These capillary structures are necessary in order to make available elements 

and compounds for the maintenance, function and growth of 3D engineered tissue 

structures.  Without a capillary bed, tissues grown in a culture are limited to diffusion 

dynamics for the movement of materials to and from cellular structure as a means to 

supplying them with the factors necessary for their maintenance and growth.  Relying on 

diffusion forces limits the growth and survival of cells to approximately 200-microns 
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beyond the tissues boundary with cell culture media.  Without a 3D capillary bed, 

structures supplying the necessary nutrients and metabolic factors only two dimensional 

(2D) growths are achievable (Simms, Bowman et al. 2008).  This is unacceptable if tissue 

engineering is to reach its anticipated potential.  Three-dimensional tissue structures must 

be realized before true tissue engineering can be claimed.   

In order to successfully support the engineering of 3D tissue structures, we seek to 

design vascular tree models from which 3D scaffolds that duplicate the structural patterns 

of specific vascular trees, which are characteristic of specialized tissue structures 

(Mertsching, Walles et al. 2005; Schreiner, Karch et al. 2006; Linke, Schanz et al. 2007; 

Wischgoll, Meyer et al. 2007).  Duplication of structural patterns is necessary because the 

functional morphology of tissues relies greatly on the capillary flow pattern existing in a 

particular tissue type.  Examples of specialized capillary flow patterns that have structural 

designs that are essential to the functional morphology of a tissue structure are: The air 

exchange capillary beds found in the perialveolar spaces of the lung; the capillary tufts 

found in the glomerulus of the kidney; the dermal papillary loop; the deep horizontal 

plexus; and the perforating arterioles and venules of the cutaneous vasculature.   

The therapeutic needs for 3D tissue structures, along with the failures demonstrated in 

literature to stimulated capillary bed formation in vitro, prompted us to research the 

possibility of mimicking vascular tree designs using computer-aided design (CAD) 

models.  It is our aim to show that CAD models can be created using 

stereolithographically (STL)-constructed 3D models that use data acquired directly from 

vascular structures.  Creating models using this method, we plan to be capable of 
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mimicking the design of the tissue-specific capillary bed that contains vascular tree 

systems.  Designs could be readily used to create 3D vascular scaffold by rapid 

prototyping techniques.   

Previous studies of the vascular networks found in organs, which undergo gas or fluid 

exchange with the external environment, has provided a unique view of the 3D range 

covered by capillaries, arteries and veins.  The visualization of the circulatory system’s 

role in sustaining large areas of cellular growth has long been realized through various 

histological techniques.  Using our knowledge of these studies, we derived an approach 

that uses existing techniques in ways that enable us to design methods for constructing 

vasculature tree replicas that include capillary beds.   

New developmental clues are being discovered, and fundamental pathways in stem 

cell development are being better understood.  This will allow scientists in the near future 

to benefit from the large-scale production of not only stem cells, but all types of cells in a 

non-differentiated proliferative state.  Scientists need techniques that will open corridors 

into using these cells in the in vitro engineering of unlimited types of tissues for 

transplantation, large womb healing and the engineering of complete organs.  The 

successful completion of such projects will involve utilizing the transfer of 

interdisciplinary information and technologies from molecular biology, cellular biology, 

medicine, biochemistry, chemical engineering, material engineering, computer 

engineering and electrical engineering.   
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The diffusion of nutrients’ metabolic waste and other factors occurs through the 

extracellular matrix at a rate too slow for cells to survive in groups much larger than a 

few cell layers without some type of specialization occurring in the cells’ metabolism or 

organization.  This is the basis for the formation of the body cavity and the circulatory 

system in early metazoans more than 600 million years ago.  Even today, researchers are 

exploring how chemotactic behavior is initiated through the release and diffusion of 

certain cellular factors (Solari, Kessler et al. 2006).  An example of such behavior has 

been studied in the single-cell slime mold Dictyostelium discoideum.  When nutrients are 

used up, these organisms form colonies to survive.  Individual organisms are attracted to 

the cells, releasing the highest levels of cAMP.  The single-cell Dictyostelium discoideum 

respond metabolically to cAMP (Bolourani, Spiegelman et al. 2006) by using the same 

signal transduction pathways common to those that signal endothelial and smooth muscle 

cells to migrate and differentiate during vasculogenesis and angiogenesis (Takahashi, 

Kawahara et al. 1996; Roztocil, Nicholl et al. 2007).   

The cellular specializations that occur during the development of tissue structures is 

environmentally regulated and maintained (Howlett and Bissell 1993; Nelson and Bissell 

2006).  In order to obtain the desired result from cell-culturing techniques for the 

development of 3D tissue constructs and to bioengineer the large tissue structures into a 

true intercellular circulatory system, it is necessary to use one that mimics the system 

found in the tissue sought to be created..  The key question that we sought to answer in 

this thesis is: How do you recreate such an intrinsic design? 
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Prior Work 

Previous studies of the vascular network found in organs, which undergo gas or fluid 

exchange with the external environment, has provided a unique view of the 3D range 

covered by capillaries, arteries and veins. This provides the visualization of the 

circulatory system’s role in sustaining large areas of cellular growth, so, from these 

studies; we derived techniques that enable us to design a method for the construction of 

replicas of vasculatures for specific tissue regions.  

It has been shown that scaffolds that support vessel wall development can be created 

for blood vessels, but these scaffolds have been used to make large, mostly straight tubes 

of a constant diameter, without much branching or a complex of small vessels or 

capillaries of any sort (Sodian, Fu et al. 2005).  New methods are needed for developing 

designs for bimolecular scaffolding that support a wide array of cellular functions and are 

not rejected by the host (Choi, Choung et al. 2005; Berry, Yazdani et al. 2006; 

Williamson, Black et al. 2006).  For nearly twenty years, studies of the 3D structure of 

blood vessels (Schraufnagel 1987) and other luminal systems found in the body (Hojo 

1993) have produced techniques that use a blend of vinyl chloride latexes that consist of a 

plasticized vinyl chloride copolymer with a vinyl chloride copolymer, to create a latex 

replica of the microvasculature system, which demonstrates the luminal surfaces of these 

structures.  Extensive literature exists that demonstrates techniques for creating a vascular 

cast that replicates the capillary systems for most tissue types (Hurley and Stein 1957; 

Lametschwandtner, Lametschwandtner et al. 1984; Schraufnagel 1987; 

Lametschwandtner, Lametschwandtner et al. 1990; Aharinejad and Lametschwandtner 
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1992; Gross, Joneja et al. 1993).  These studies, beginning in the 1950's, were performed 

to better understand the microvascular design for specialized tissue structures.  Prior to 

vascular casting, scientists had to rely on 2D images obtained from histological sections 

of the tissue being studied, cut using rotary microtomes from which to they could visually 

reconstruct some idea of how the 3D microvascular system for a given tissue structure 

appeared.  In the early days, this took a lot of imagination and drawing skills to produce 

reasonable 2D drawing of these 3D structures.  In the late 1970’s through the early 80’s, 

with the onset of computer imaging, micrographs taken of series of tissue sections were 

aligned and the preserved structure reconstructed in the third dimension.  But prior to this 

morphological reconstruction, 3D vascular replicas were already being cast with various 

latex, epoxy and methacrylate resins, which after the tissue was corroded, gave 

investigators the ability to visualize, using scanning electron microscopy, the dynamic 

complexity of the 3D microvascular structural arrangements occurring in specialized 

tissue structures.  In the early 1990's, computer-based 3D visualization of complex 

microvascular systems began to improve with the algorithmic use of segmentation 

techniques.  This led to improvements in the resolution captured in the digital images 

being created and the spatial representation of complex microscopic structures.  

Automatic extractions of microvascular contour and their volumetric representation were 

algorithmically achieved (Ro, Handels et al. 1995).  In order to reduce the amount of 

visual image information from which we constructed 2D data sets, these studies used 

vascular corrosion casts.  Vascular corrosion casts were embedded in plastic resins and 

sectioned with rotary microtomes, similar to the tissues sectioned and prepared for earlier 

reconstruction techniques.  Recent studies have included the use of fluorescence additive 
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during the preparation of  casting resins  for the fluorescent imaging of surfaces created 

using cryomicrotomy (Lagerveld, ter Wee et al. 2007).  The 3D computer reconstructions 

created with this technique are limited to 50 microns, so the resolution at this level is 

inefficient for the reconstruction of capillaries that have diameters ranging from 6 to 12 

microns.   

Subsequent advances in imaging technique for 3D visualization of vascular tree 

systems relied on the imaging of the physical behavior of atomic particles under the 

influence of X-rays, magnetic waves, sound waves or high-frequency light.  Instruments 

utilizing the characteristics of such atomic interactions were developed to produce data 

for acquiring and constructing images in 3D.  One such technique is computer 

tomography (CT).  Image data obtained using this technique has been used to construct 

models of various bony tissue structures using 3D prototype fabrication techniques that 

create tissue scaffolding (Schipper, Ridder et al. 2004) NMR data has been similarly used 

to fabricate models of various tissue for scaffold prototypes (Cheah, Chua et al. 2003).  

These imaging techniques fail to provide the resolution necessary to demonstrate fine 

tissue structures that exist at the microscopic level.  With development in micro computer 

tomography (Micro-CT) in the 1990's, and through the use of blood-pooled contrasting 

agents, images that demonstrated much finer anatomical features became obtainable. 

The inability to provide nutrients and oxygen to cells far from the tissue/culture 

media interface has made 3D tissue structures resist production.  The diffusion of 

nutrients’ metabolic waste and other factors through the extracellular matrix occurs at a 

rate too slow for cells to survive if they are much further than a few cell layers, unless 
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there is some type of specialization occurring in the cells’ metabolism or organization.  

This is the basis for the formation of body cavities and circulatory systems in early 

metazoans over 600 million years ago.  Even today, researchers are exploring how 

chemotactic behavior is initiated through the release and diffusion of certain cellular 

factors  (Solari, Ganguly et al. 2006).  When the nutrients of the single-cell organism 

Dictyostelium discoideum are used up, they form colonies to survive.  Individual 

organisms are attracted to the cells, releasing the highest levels of cAMP.  Free-living  

Dictyostelium discoideum respond metabolically to cAMP (Bolourani, Spiegelman et al. 

2006) and use the same signal transduction pathways common to those that signal 

endothelial and smooth muscle cells to migrate during vasculogenesis (Takahashi, 

Kawahara et al. 1996; Nicholl, Tanski et al. 2004).  Specializations make it imperative 

that the proper environment is supplied to the developing tissues in order to obtain the 

desired result from cell culturing techniques.  In order to bioengineer large 3D tissue 

structure, a true intercellular circulatory system is necessary.  The question then is, how 

do you recreate such an intrinsic design? 

Much work is being done in the area of angiogenesis (Kilian, Alt et al.).  Although 

some success have been obtained in the area of in vitro blood vessel formation, (Weber, 

Rossi et al. 2002; Bergers and Song 2005) these successes have resulted in limited 

diameters, and the lengths have been small. Also, limited success has been achieved 

using scaffold constructed as flat sheets of collagen type I (Boccafoschi, Habermehl et al. 

2005), but the growth both of smooth muscle and endothelial cells show no improvement 

over cell cultures without such scaffolding.  In another instance, non-woven 

polytetrafluoroethylene (PTFE),  polyethylene terephthalate (van Meeteren, Ruurs et al.) 
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and poly nanofiber mats (Grigoriy A. Mun) (Horiuchi, Suzuki et al.) were constructed for 

used as scaffolds to substitute for basement membrane collagen and elastin fibers (Ma, 

Kotaki et al. 2005).  Modifications were made in its surface in an attempt to mimic the 

fibrous proteins found in extracellular matrix, constructing a biocompatible surface for 

endothelial cells.  This was a noble attempt to create a substrate compatible with 

endothelial cell growth, even stimulating endothelial cells to express surface adhesion 

proteins PECAM, VCAM-1 (or CD106) and ICAM-1 (or CD54) (Ma, Kotaki et al. 

2005).  But this attempt was also done on a flat surface and did not come close to 

providing the necessary environment for blood vessel formation.  A more recent study 

used electro-spun  Type I Collagen, elastin and poly (Stitzel, Liu et al. 2006) woven into 

micron to nano-scale fibers and constructed into a tube shaped-scaffold (Stitzel, Liu et al. 

2006) improved the compliance and strength of scaffolds by adding the biodegradable 

poly-lactide-co-glycolide (PLCG).  The resulting scaffold did not educe severely limited 

or systemic tissue reaction when grafted in vivo.  These tubes demonstrated cells 

infiltration and differentiation, and they microscopically showed some similarities to 

actual blood vessels (Stitzel, Liu et al. 2006).  But these are straight tubes of a constant 

diameter, and there was no branching into a fine complex of small vessels to large 

capillaries.  Even micro-CT that has resolution around 8 microns has not, in the past, 

produced volumetric images of areas large enough to resolve entire vascular tree 

structures, nor were the capillary systems completely demonstrated (Muller 2006).  The 

3D reconstruction of serial montages demonstrating capillary and pre-capillary 

anastomosis and other such microscopic tissue structures has successfully created models 

used to understand their structural dynamics (Zhai, Birn et al. 2003).  Not only is this a 
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labor-intensive process, the file size that would result during the modeling of such high-

resolution reconstructions has prevented the recreation of entire vascular tree structures.   

The application of computer science and engineering technology into medical science 

has led to the bio-CAD structural refinement of many medical devices such as artificial 

joints, bone implants, vascular stents and prostheses (Sun 2005).  These devices are 

mechanical in their application and have made vast improvements over their predecessors 

that were designed before the advent of computer technology products that aided in the 

design and manufacturing processes (Sun 2005; Witkowski, Komine et al. 2006; van 

Lenthe, Hagenmuller et al. 2007; Wang and Tang 2007).  In contrast, the use of bio-CAD 

to engineer tissue structures has not yielded products with comparable success in 

physiological applications (Sun, Darling et al. 2004; Sun, Starly et al. 2004; Sun, Starly et 

al. 2005).   

Resolving a Complete Vasculature Tree 

There has not been a significant demand for the complete reconstruction of capillary 

bed structures using micro-CT.  As a result, there has been very limited success with 

complete reconstructions of these structures (Ikura, Shimizu et al. 2001; Badea, Hedlund 

et al. 2006; Badea, Hedlund et al. 2007).  The success of computer-aided design to 

reverse engineer vascular tree tissue scaffoldings weighs heavily on the ability to 

reconstruct, in 3D, complete capillary bed systems.  The use of micro-CT to visualize a 

complete vasculature tree system, which includes a corresponding capillary bed, has been 

a priority for researchers utilizing the current high-end micro-CT imaging techniques 

(Ritman 2004; Bentley, Jorgensen et al. 2007; Jorgensen, Eaker et al. 2008).  While the 
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present instrumentation, technically, has the resolving capabilities (Sasov and Van Dyck 

1998; Parkinson and Sasov 2008), the limitation of the contrast agents used in this 

technique have prevented the complete resolution of capillary systems (Badea, Hedlund 

et al. 2006).  In this thesis, we examine the possibility of obtaining 3D images of a 

complete microvascular tree structure using micro-CT as part of a novel method to 

reverse engineer the bio-CAD for vascular scaffolding production.   

Using a cast made from the lumen of the appropriate vascular tree, a scaffold can be 

designed to replicate the vascular tree’s framework.  Our novel method for engineering 

tissue structures is built around reverse engineering CAD for vascular scaffolding, which 

mimic the actual vascular tissue structures designed around models created using 

vascular cast.  The micro-CT of vascular casts is explored for its effectiveness as a tool 

for acquiring the necessary images at a resolution capable of resolving complete capillary 

structures.  The current successes obtained in the 3D reconstruction of tubular 

microstructures with diameters ranging in size from 5 – 12 microns have been 

accomplished by serial section reconstruction using microscopical techniques, including 

confocal optical sectioning along with subsequent 3D image reconstruction.  These 

techniques are limited in scope and are labor intensive, but they provide detailed 3D 

image representation for small areas (Jirkovska, Kubinova et al. 1998; Karen, Jirkovska 

et al. 2003; Woodward and Maina 2005; Woodward and Maina 2008).  The resulting 

images are limited by the area of tissues sectionable face or the microscope’s field of 

view (Karen, Jirkovska et al. 2003; Woodward and Maina 2005).   
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Limitations of Contrasting Agents 

There are a few obstacles to the complete visualization of vascular tree systems using 

the currently applied micro-CT techniques.  The challenge is centered on imaging the 

capillary bed structure.  The problem is the lack of a contrast agent that allows the 

demonstration of large vessels, while at the same time demonstrates capillary beds 

(Elleaume, Charvet et al. 2002; Hainfeld, Slatkin et al. 2006; Litzlbauer, Neuhaeuser et 

al. 2006).  One of the causes is the endocytosis of heavy metal based contrasting agent by 

the endothelial cells comprising the blood vessel walls (Langheinrich, Leithauser et al. 

2004).  The endocytotic formation of large contrasting-agent filled vacuoles by 

endothelial cells lining the vasculature leads to its deformations.  These large vacuoles 

can obstruct the narrow lumen of small vessels, blocking complete perfusion and 

preventing the accurate micro-CT imaging of the capillary bed system.   

Less viscous contrasting agents, or those without radio-opaque additives, have an 

intensity issue, in which not enough contrast exists between the agent in the capillary 

lumen and the surrounding tissues to distinguish one from the other (Hainfeld, Slatkin et 

al. 2006; Mukundan, Ghaghada et al. 2006; Kong, Lee et al. 2007; Habibi, Krishnam et 

al. 2008).  The less viscous, iodine-based in vivo contrast agents are metabolized and 

create unstable images that fade rapidly from capillary structures (Priebe, Aukrust et al. 

1999; Kim, Kim et al. 2005; Ford, Graham et al. 2006).   

Our goal is to demonstrate our ability to acquire 2D micro-CT image slices that can 

be reconstructed into models that clearly demonstrate capillary beds.  In order to 

overcome the difficulties with micro-CT contrast agents hampering complete 
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visualization of capillary bed systems, we decided to go back to our original idea of using 

corrosion casts to obtain image data of the microvasculature.  Viscosity issues have long 

ago been worked out with this technique, as complete perfusions of capillary bed 

structures have been demonstrated (Lametschwandtner, Lametschwandtner et al. 1984; 

Lametschwandtner, Lametschwandtner et al. 1990; Simoens, De Schaepdrijver et al. 

1992).  Batson’s methylmethacrylate (Polysciences) was chosen because of its proven 

success in creating durable vascular casts (Gross, Joneja et al. 1993; Krohn and Bertelsen 

1997).   

A specimen’s size and thickness is an issue addressed with the eroding away of 

tissues, characteristic of the corrosion casting technique.  Given the significant reduction 

in background noise, thanks to the removal of the surrounding soft tissue, this technique 

provides clean structures of which 3D images can then be created and stored as mesh 

structures in a stereolithography file format, compatible with computer-guided 3D 

fabrication.  We processed data sets into stereo lithographic models from various tissue 

samples in an attempt to mimic vascular tree systems.   

Bio-CAD /CATE 

Structural data must be acquired with the specifications necessary to provide a 

structural environment that would meet the vascular and physiological needs for the 

growth and homeostasis of 3D tissue genesis.  The structural environment must be 

designed to support the necessary cell behaviors of specific cell types.  In the late 1990's, 

as the identification of molecules that controlled branching during tissue development 

increased, the architectural branching patterns created during tissue morphogenesis 
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became well understood (al-Awqati and Goldberg 1998).   Computer-aided technologies 

have been utilized to enhance the obtainable result in imaging technology, CAD-based 

anatomical modeling and rapid prototyping.  These fields of research have been utilized 

separately and together in the effort to develop artificial replacement constructs for 

damaged tissues.  (Karen, Jirkovska et al. 2003; J. Nam 2004)  Computer Aided Tissue 

Engineering  (CATE) has been used for the modeling, design and manufacturing of 

numerous types of tissue scaffolds (J. Nam 2004).  From the design of internal and 

external architectures, through bio-mimicking techniques to creating non-mimicked 

structures such as chambers for drug delivery, these bio- mimicked design are based on 

3D reconstruction of real anatomical data acquired through computer tomography, 

magnetic resonance imaging and the reconstruction serial microtome/ laser 

sections(Weihe, Wehmoller et al. 2000; Sun and Lal 2002).  These scaffolds have been 

modular, multi-layered and vascular-tree based (J. Nam 2004).  Porous artifacts have 

been created in CAD of scaffold for tissues like bone, in which this type of structure is 

suitable.(Schroeder, Regli et al. 2005)Using stochastic geometry, uniform and binomial-

point process and Poisson process are combined to create Boolean models to represent 

the porous artifacts(Fang, Starly et al. 2005).   

Modeling 

The resolution of a CT scanner is not the same as the voxel size of the scan, so it is 

quite likely that the resolution of the scanner is preventing investigators from resolving 

complete capillaries in some cases.  Vessels that have diameters smaller than the point 

spread function will be reduced in intensity and difficult to detect.  The extent to which 

the contrast agents fill the capillaries can be verified on histological sections so as to rule 
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this out as an explanation.  Histological studies at the electron microscopy level have 

shown that endothelial cells, through endocytosis, attempt to remove heavy metal-

containing contrasting medias from the vascular lumen (Kim, Park et al. 2007; Mondy 

and N. De Clerck 2009, In Press).  This endocytosis causes the formation of large 

cytoplasmic vesicles demonstrated in Figure 1, which protrude into the vascular lumen.  

This cellular behavior is capable of blocking the efficient perfusion on contrasting agents 

in to the microvasculature for micro-CT imaging.   

We have approached the challenges micro-CT presents with regards to accurately 

resolving complete capillary structures by 3D scanning non-metal containing corrosion 

casts of vascular structures with micro-CT (Mondy and N. De Clerck 2009 In Press ).  

 

Figure 1: Globular spheres of Microfil.  Region of Interest (ROI) constructed from 
rabbit kidney vascular network perfused with Microfil contrasting agent.  Globular 
spheres of Microfil are present in the luminal walls as evidence of flow obstruction. 

500µm 
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Reconstruction in stereolithography format allows the compatibility of subsequent 3D 

models with most CAD software.   

Biomaterials and Vascular Scaffolding 

The biomaterials used can be designed to direct cell differentiation polymerization 

and migration, and they can be a tool for the manipulation of stem cell behavior during 

the implementation of tissue engineering designs (Prasad and Krishnan ; Welsh and 

Tirrell 2000; Hunt and Shoichet 2002; Wang, Kim et al. 2006; Couet, Rajan et al. 2007).   

Recent methods of tissue scaffold construction for regenerative tissue structures begin 

with a viscous liquid that polymerizes into a porous, fibrous, biocompatible network 

(Chen and Ma 2004; Liu, Won et al. 2006; Wei, Jin et al. 2007).  The biodegradable 

polymers used to construct these scaffolds attempt to mimic the fibrous structure of type I 

collagen architectures seen in the fibrous capsules found throughout the targeted tissue's 

extracellular matrix. The nano-scale of these fibrous matrixes was created using phase-

separation of poly L-lactic acid (PLLA) (Chen and Ma 2004).  This fibrous scaffold 

could be made porous through the use of paraffin beads by a dispersion  method(Chen 

and Ma 2004).  With these techniques, the size of both the nano-fibers and the spherical 

pores can both be controlled by variation in the scaffold's fabrication process.  Varying 

the mechanical properties, the inter-fiber distances and the inter-pore connectivity are all 

possible by variation in the fabrication procedures, making these types of scaffolds 

adaptable for various tissue structural types.  Another recent approach combines direct 

polymer melt and electrospining of nanofibers to create scaffolds that mimic the nano-

fibrous nature of the extra cellular matrix (Park, Kim et al. 2008).  In this process, CAD 

operations were used to create such features as pore size and interconnectivity.   
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Using CAD software to interface hydrogel technology with 3D prototyping, the 

manipulation of 3D laser microfabrication techniques can be used to create a scaffold for 

vasculogenesis.  This same process, with modifications in the image selection, can be 

used to create scaffold designs that model any extra cellular matrix tissue structure.   

Vascular scaffolds  must allow for varying degrees of layering, permit cell migration, 

contain the necessary growth factors found in the extra cellular matrix of developing 

blood vessels (van Meeteren, Ruurs et al. 2006) and be suitable for the engineering of an 

in vitro cellular replica of the vascular tree.  The type of biomaterial used in constructing 

a tissue scaffold and its bioactive characteristics, can be tailored to play key roles in the 

seeded stem cell's developmental behaviors.  (Elisseeff, Ferran et al. 2006)  For vascular 

tissue engineering, the most promising biomaterial and fabrication method being used in 

scaffold production comes through the use of hydrogels.   

Hydrogel 

Hydrogels come in various formulations and can be fabricated into scaffold structure 

in a few ways (Anseth, Bowman et al. 1996; Elisseeff, Anseth et al. 1999; Elisseeff 

2008).  Their ability to be formulated for the controlled release of growth factors, like 

TGF-beta and FGF, is only one of the promising characteristics that can be produced with 

hydrogels (Elisseeff, McIntosh et al. 2001).  Even more promising is the ability to use 

light to not only pattern its polymer structure (Gattas-Asfura, Weisman et al. 2005; 

Zourob, Gough et al. 2006; Khalil and Sun 2007),  but also, through photo cross-linking, 

(Bryant, Nuttelman et al. 1999) the encapsulation and 3D patterning of bio-molecules for 

the guided control of cell behavior (Burdick and Anseth 2002; Bryant, Bender et al. 2004; 
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Hahn, Miller et al. 2006) and tissue developmental (Cao and Shoichet 2002).  Hydrogels 

can be fashioned from many types of materials, including simple carbon molecules such 

as ethylene oxide (Elisseeff, Anseth et al. 1999); carbohydrate monomers, including those 

in dextran (Levesque and Shoichet 2006) and agarose (Luo and Shoichet 2004); protein 

monomers, like the self-assembling sub-units of elastin (Mithieux, Rasko et al. 2004), a 

key material in the structure of blood vessels; and even DNA (Um, Lee et al. 2006).  The 

photosensitivity of hydrogels has allowed investigators to pattern in the gel sites for the 

attachment of bioactive peptides to regulate cell behavior in specific patterns (Weber, 

Hayda et al. 2007).  

Using a vascular scaffold that is combined with scaffolds produced to mimic 

extracellular matrix tissue structures capsules, we will have the framework to reverse 

engineer any of the tissue structures produced in nature.  With the completion of this 

work, we are one step closer to reverse bioengineered complete vascular tree systems. 

We will begin designing large arteries and arterioles, replicating the in vivo branching 

patterns demonstrated in image data.  The microscopic capillary bed-containing central 

channels are essential to tissue engineering goals being sought in the scientific 

community, and so is connecting them to the corresponding venules and veins systems 

specific to the targeted tissue structure.  The resulting vascular tree will serve as a support 

structure for further tissue genesis in bioreactor chambers that regulate vascular flow and 

media content that is generated using sensors that gather and feedback data to a computer 

that is capable of regulating the dispensing of molecular and environmental factors that 

control cell behaviors, such as migration proliferation differentiation and the production 

of bioactive chemicals.   
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Cell Culture 

Embryonic stem cells, as their name suggests, come from embryos. In our case, these 

embryonic stem cells will come from mice and will be cultured in a lab. These embryonic 

stem cells are isolated by transferring the inner cell mass, which consists of the cells 

inside the blastocyst, into a tissue culture plastic filled with culture medium. (Draper, 

Moore et al. 2004) The choice of medium will also vary depending on the cell type of 

interest because different cell types require different medium in order to differentiate into 

the desired cell type. (Imreh, Wolbank et al. 2004) Since these embryonic stem cells have 

the ability to differentiate into any cell type, they will require addition help when growing 

in vitro. In the mice’s case, the inner surface of the tissue culture plastic dish will be 

coated with specific cell types that have been treated to not divide. These coating cells are 

known as feeder cells.  Feeder cells are used in culturing to maintain pluripotent stem 

cells, such as embryonic stem cells, and in most cases the feeder cells are fibroblast cells. 

(Draper, Moore et al. 2004) The main purpose for having these feeder cells coating the 

bottom of the culture dish is to provide a sticker surface for the embryonic stem cells 

attachment, as well as providing additional nutrients into the media. Currently, 

researchers are trying new ways of growing embryonic stem cells without the use of 

feeder cells in order to prevent contamination. (Draper, Moore et al. 2004) 

Stimulatory Bioreactor  

Research is now beginning to show that hydrostatic forces play an important role in 

the regulation of structural formation during vasculogenesis and angiogenesis.  The 

supplemental objective of this proposed project is to reproduce the actuations of the heart, 

delivering, in addition to needed nutrients and developmental factors, the stress forces 



21 

 

experienced by the cells comprising the vessel walls. Successes in the field of in vitro 

vasculogenesis have been limited to relatively small leaky capillary networks and short 

scaffold-supported vascular-like tubes, which, in some cases, when grafted, stimulated 

limited in-vivo angiogenesis (Sreerekha and Krishnan 2006).  These experiments used 

scaffolding for structural support and/or chemical factors for the extracellular support of 

inter- and intracellular communications needed to support migration, proliferation and 

differentiation stimulating vasculogenesis.  A novel design has been developed that 

breaks through the present barriers to the bioengineering of blood vessels.  A stimulatory 

design of interdisciplinary conception recreates the fluid dynamics found in blood vessels 

and supports neutralizing the gravitational forces experienced by antigenic cells during in 

vitro development.   

 

Dissertation Outline 

This dissertation describes a method for the acquisition of data for use in the 

modeling and visualization of the microvascular structures occurring in lung, kidney, 

brain and skin tissues.  The purpose of this method is to obtain the ability to mimic the 

specific patterns of capillary bed systems uniquely occurring in specific tissues.   

After our introduction on this topic we will describe the fundamentals of vascular tree 

systems beginning with their biological foundation.  After this introduction we will 

discuss the anatomy of capillary bed systems, the microcirculation of blood through these 

systems, and the microscopic structural anatomy of the vascular wall as its changes 

throughout the circulatory system. 
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We will continue with a discussion on the need for new techniques in scaffolding 

designs and in tissue culturing methods in order to produce the 3-D tissue structures 

sought for in tissue engineering.  This will follow with an introduction the state-of-the-art 

in virtual, in vitro and in vivo vascular tree construction and the sustained release systems 

designed association with scaffolding production to assist in vasculogenesis.  Afterwards 

will follow an in detailed discussion on the current approach being taken to reverse 

engineer vascular tree systems, the problems that exist in this approach and solutions 

proposed to date. 

Next we will discuss our approach to modeling vascular tree systems that include a 

complete and accurate representation of tissue specific capillary bed.  We will lay out our 

research design which includes data acquisition, issues with resolution and accuracy, 

resolution at different levels with different devices, merging of the data and model 

creation, and issues with the size of data.   

Finally we will present a case study where we will create a complete and accurate 

capillary bed representation from the dermal layers of rabbit skin.  In this case study will 

show the creation of a complete and accurate Bio-CAD model for the skin vasculature.  

This will began with a 3-D model acquisition using micro CT of a Batson's corrosion 

casting.  This will be followed by our 3-D creation of STL models in the initial 

processing required in order to attain these models.  We will and by using computer aided 

design software to convert STL models into a design for vascular scaffolding that can 

support the construction of vascular structures from skin. 
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When these unique patterns are modeled and then fabricated into tissue scaffolding, 

we will overcome the barrier against 3-D tissue engineering that prevents the science of 

tissue engineering from being fully effective for use clinical settings. 
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Chapter Two 

Vascular Tree Fundamentals 

Biological Foundation of Blood Vessels 

The vascular tree system is the result of billions of years of multicellular 

environmental evolution.  Beginning with cell colonies forming reproductive structure, 

single, free living cells began to form cooperatives where some cells became specialized 

with specific phenotypes that allowed the colony to form specialized structures that 

 

Figure 2: Free moving pluripotential Molluscan stem cell.  A free moving pluripotential 
Molluscan stem cell that gains its nutrients from - and exchanges oxygen and carbon 
dioxide with - interstitial fluid that flows in the loose interstitium between organs by 

way of a rudimentary cardiovascular system. 

1.5µ
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enhanced the group’s survival.  The formation of supportive structures, reproductive 

structure, and feeding structures by traditional solitary cells began the movement towards 

the need for a vascular system.  These multicellular structures formed based on metabolic 

needs and the restricted availability of fundamental resources such as oxygen, nitrogen 

and carbon.  For survival in environments where these resources became low in 

concentration, these multicellular communities evolved to meet this challenge.  We can 

see examples of this behavior in the colony forming, polyphyletic, slime molds (Maeda 

and Takeuchi 1969; Maeda 1970; MacWilliams and Bonner 1979; Bonner and Lamont 

2005).  

 

Figure 3: Free living single cellular animals.  Ciliates, free living single cellular 
animals gain nutrients from - and exchange oxygen and carbon dioxide directly 

with its aqueous environment. 

50µm 
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More advanced examples can be seen in the invertebrate phylums Porifera and 

Cnidaria (Wenner, Knott et al. 1983; Zrzavý, Mihulka et al. 1998).  These form much 

larger body plans and adapt to the loss of surface area by the formation of canal like 

structure that make up a rudimentary circulatory system with no heart.  The ciliary 

motion of specialized cells, along with water currents, keeps the flow of metabolites to 

and from the individual cell comprising these organisms.  The formation of the heart 

along with a discreetly walled vasculature begins to form in the phylas Mollusca and 

Annelida (Wenner, Knott et al. 1983; Zrzavý, Mihulka et al. 1998) (Figures 3-5).   

 

Figure 4: Open circulatory system. The two chamber heart of the sea slug Elysia 
chlorotica and its main vascular branches which lead to an open circulatory 

system between organs. 

5mm 
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Vascular tree is a term used to describe a tubular likes system which carries blood to 

and from the heart.  Together they termed the cardiovascular system.  The cardiovascular 

system is one of two vascular systems found in vertebrates.  The second is the lymphatic 

system which begins as blind capillaries that absorb and carries excess interstitial fluid 

called lymph back to the cardiovascular system via progressively larger lymphatic vessels 

that   into veins near the heart. 

Vascular tree systems make up two circuits in the cardiovascular system, the 

pulmonary circuit, which carries blood to and from the lungs for oxygenation and the 

 

Figure 5: No capillary system.  The open circulatory system of Elysia 
chlorotica has no capillary system just large sinusoidal spaces where cells and 
in this tissue fluid move freely to and from changing concentration gradients. 

50µm 
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systemic circuit which carries blood to and from the tissues of the body providing oxygen 

and removing carbon dioxide.   

The vasculature as it moves away from the heart is termed arteries.  Arteries originate 

from the left ventricle as the aorta and branch smaller and smaller in diameter and empty 

into large arterioles.  Most arteries empty into capillary beds via arterioles but the 

exceptions are the arteriovenous anastomoses.  These structures are where the arteriole 

system bypasses capillary beds and empty directly into the venous system.  In the 

structure of arteriovenous anastomoses the sub endothelial layers vary from that of 

normal arteriole and venules.  You find in these layers plump polygonal longitudinally 

arranged smooth muscle cells and a thick tunica media. When the smooth muscle cells 

contract blood flow is cut off from going directly into the venous system and is forced 

into the nearby capillary beds.  The vasculature that drains the capillary beds is called 

venules and as they get progressively larger in diameter they are called veins and finally 

terminate in the right atrium of the heart.   

The Anatomy of Capillary Bed Systems 

While, there are some common characteristics in the capillary bed system between 

organs, each organ has its own unique features.  The capillary bed system of each organ 

has a unique design and in order to understand an organ you must be able to truly 

understand and visualize the structure of its capillary bed system and how it relates to the 

organ's complete vasculature (Figure 6).   
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Capillary beds are thin walled vessels responsible for the transport of gases, nutrition, 

metabolic waste, hormones and signaling molecules into and out of the intercellular 

spaces (Figures 7&8).  The driving force for the movement of these materials is a 

combination of osmotic pressure and hydrostatic pressure.  Crystalloids or molecules in 

true solution, and Colloids, molecules suspended in solution create the osmotic gradients 

that exist between the fluid and blood vessels and the interstitial or tissue fluid.   

The concentration gradient of crystalloids alone does not create high enough of 

osmotic force to cause any diffusion across the walls of the capillaries, but the high 

 

Figure 6: Perialveolar capillary spaces.  Electron micrograph of lung tissue 
showing the perialveolar capillary spaces fill with leukocytes that protect the 
from invading organisms and red blood cells which exchange carbon dioxide 

for oxygen from the external environment. 

10µm 
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colloid concentration in the blood stream wants to pull tissue fluid into the capillaries.  

The hydrostatic pressure created by blood being pumped through the vasculature is a high 

at the arterial end of the capillary beds.  This hydrostatic pressure over comes the osmotic 

pressure and drives blood plasma through semi permeable membranes between or within 

fenestrations endothelial cells at the arterial and of the capillary bed.  As blood reaches 

the venous end of the capillary bed and hydrostatic forces drop considerably and are 

overcome by the colloid osmotic force within the capillary, which causes interstitial fluid 

to diffuse back into the capillary lumen.  

 

Figure 7: Typical capillary wall.  A cross sectional drawing of a endothelial 
cell comprising the typical capillary wall and a red blood cell containing 

hemoglobin which participates in the gaseous exchange between the interstitial 
fluids between a cell's which make up the body's tissues and the body's external 

environment. (Illustration done by William Mondy) 
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Microcirculation 

The volume flow of blood being pumped from a heart at any given time creates 

variable forces on the blood vessel’s walls.  The structural properties of blood vessels are 

regulated by the internal blood forces and external structural forces exerted on them by 

the surrounding tissues.  From a physiological point of view capillary blood flow and 

sometimes the neighboring arteriole and venules blood flow are considered to be the 

microcirculation of the cardiovascular system.  The distance extending to and from the 

capillary bed the arteriole and venules blood vessels are to be considered as part of the 

 

Figure 8: An alveolar capillary.  While moving through an alveolar capillary in the 
lung a lymphocyte undergoes mitosis in response to an exposure to a bacteria toxin.   

2.0µm 
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characteristics of a microcirculatory system are: a lower concentration of blood cells than 

you will find and larger vessels, decrease and apparent viscosity, the movement of fluid 

out of and back into the capillary lumen, a greater chance for activated leukocytes to 

attach to the vascular wall because of the narrowing of the lumen, increased in the 

proportion of smooth muscle cells composing the vessel wall.  Smooth muscle cells are 

important factor because their contractile properties regulate the vessel's diameter, flow 

resistance and pressure gradient.   

 

Figure 9: Perialveolar capillaries.  Photomicrograph of a large artery and one of its 
medium-size arteriole branches shown contributing blood to the perialveolar 

capillaries in this histological section of mouse lung. 
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Anatomy of the Vascular Wall 

With the exception of capillaries the walls of blood vessels are broken down into 

three concentric layers of tissue called tunics, the tunica intima, the tunica media and the 

tunica adventitia.  The tunica intima is the innermost layer and consists of a single layer 

of squamous endothelial cells surrounded by sub endothelium connective tissue.  The 

endothelial cells secrete this connective tissue in the form of types II, IV, and type V 

collagens.  They also secrete lamin, nitrous oxide and a host of angiogenic factors as well 

as presenting several membrane-bound enzymatic proteins and protein receptors whose 

 

Figure 10: Arteriole branching into glomeruli.  A blood fill arteriole is seen 
branching into a number of glomeruli for the removal of metabolic waste from 

the blood's serum by way of the fenestrated capillary system found in the 
glomeruli. 

50µm 
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interactions regulate metabolic and cellular behaviors.  The internal elastic membrane or 

lamina, a thin well-defined band of elastic fibers, is the outermost part of the sub 

endothelial connective tissue.  The elastic lamina is made of elastin and is fenestrated to 

allow nutrients to diffuse deep into the walls of the larger blood vessels.  Capillaries 

consist of only this layer.  In capillaries and post-capillary venules the tunic intima is 

intermittently surrounded by pericytes.  Some investigators believe that pericytes are 

precursors to smooth muscle cells and other investigators believe that pericytes are 

specialized fibroblast. 

The tunica media consists of helically arranged concentrically orientated smooth 

muscle cells and where it exists it is the largest of the three layers.  The smooth muscle 

helix begins at a 30° angle to the vessel’s center line in large arteries (Medvedev, 

Samsonov et al. 2006).  This angle increases as the diameter of the blood vessel decreases 

until it reaches an angle of nearly 90° in arterioles as they approach the capillary beds. In 

addition to smooth muscle cells, there are elastic fibers, type III collagen and 

proteoglycans. The fibrous structures form lamellae within the amorphous gel like 

substance secreted by smooth muscle cells into the extracellular matrix.  In larger arteries 

that tunica media is surrounded by an external elastic lamina.  This membrane is also 

made of elastin but not as well defined as an internal elastic lamina. 

In larger blood vessels the thickness of the muscularity prevents adequate diffusion of 

substances from the lumen of the blood vessel to the far-reaching smooth muscle cells 

and the tunica adventitia.  In these cases tunica media and the tunica adventitia needs to 

be supplied nourishment by their own vascular system called the vasa vasorum.  Because 
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venous blood is less oxygenated and contains a lower nutrient concentration than arterial 

blood, the walls of veins have more cells that cannot be supplied these factors by 

diffusion.  Because of this reason the walls of veins are more vascularized by the vasa 

vasorum than those of arteries.   

Sympathetic vasomotor nerves innervate the smooth muscle cells of the vascular 

system and are responsible for vasodilatation.  Arteries in contrast to veins have higher 

 

Figure 11: Illustration of small arteriole.  Drawing of a small arteriole illustrating the 
endothelial cells lining, basal layer of connective tissue, a single layer of smooth muscle 
cells and a pericytes wandering upon of vessels outermost surface.  (Illustration done by 

William Mondy) 
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numbers of these non-synaptic nerve endings which use norepinephrine as a 

neurotransmitter.  

The tunica adventitia is the outermost layer of blood vessels and consists of fiber 

elastic connective tissue, type I collagen, fibroblasts and longitudinally orientated elastic 

fibers.  The connective tissue found in this layer is continuous with the connective tissue 

of the surrounding structures.   

 

Figure 12: Wall of a human aorta.  A photomicrograph of a histological 
section cut across the wall of a human aorta.  Majority of the structure is tunic 

of media, consists of smooth muscle cell layers alternated of elastic 
connective tissue.  We can see in the bottom right-hand corner this vessels 
owned blood supply source, the vasa vasorum, moving through the tunica 

externa.   

50µm 
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You have two types of arteries that carry blood away from the heart, elastic or 

conducting arteries and muscular or distributing arteries.  The aorta and the large arteries 

originating from aortic arch are elastic arteries (Figure 12).  The main characteristic 

distinguishing them from the large blood vessels are the many concentric layers of 

fenestrated membranes distributed evenly through smooth muscle cells of the tunica 

media.  The rest of the major arteries are muscular arteries characterized by tunica media 

consisting of mostly smooth muscle cells. (Figure 12-14)  

The arteries feed into two types of arterioles, large arterioles with two to three layers 

of smooth muscle cells and small arterioles with one layer of smooth muscle cells (Figure 

17).  Specialize arterioles which regulate blood flow into capillary bed systems have 

 

Figure 13: Photo micrograph demonstrating a large vein.  Notice how it structure differs 
from the artery.  The vein’s muscular tunica media is irregular in thickness and needs not 
maintain a symmetrically patent lumen.  In addition the tunica externa’s thickness is very 

inconsistent and is surrounded by adipose tissue. 

50µm 
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uniquely arranged smooth muscle cells designed to form pre-capillaries sphincters.  

When these sphincters are closed blood is divergent from the capillary directly into 

venules.   

There are three types of capillaries: continuous capillaries, where the endothelial cells 

are connected with tight junctions.  These are found in muscle, connective tissue and 

nervous tissue; a fenestrated capillary whose cytoplasm contains pores connecting the 

capillary lumen to the sub endothelial connective tissue spaces, separated by an ultrathin 

 

Figure 14: Fluid flow through the body’s tissues.  Photomicrograph we can see 
the passageway’s for all three directions of fluid flow through the body’s 

tissues.  In the lower center we had a medium-sized artery, above a medium-
sized veins and to the right of the artery a very thin walled lymphatic vessel 

which returns interstitial fluid, that comes into the tissue from capillary bed’s, 
back to the blood stream at a specialize entry point near the heart. 

50µm 
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diaphragms.  These are found in pancreas intestines endocrine glands and are part of a 

carrier mediated transport system for amino acids nucleotides glucose and other 

necessary metabolic molecules of that size order; sinusoidal capillaries which have 

endothelial cell whose boundaries are irregular and conform to the shape of the 

surrounding tissue structure.  Sinusoidal capillaries form irregular blood pools and have 

diameters from 30 to 40 µ.  Sinusoidal capillaries are found in the spleen, liver and bone 

marrow. 

 

Figure 15: Capillary bed system and its associated arteriole and venules.  The 
artery is on the top and is surrounded by pericytes with contractile properties.  

Pericytes at entry points to the capillary bed system create sphincters and 
regulate whether or not blood flows into the capillaries these sphincters.  can 
force the blood flow to bypasses the capillaries to go directly to the venous 

system.  (Illustration by William Mondy) 
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The venous return of the vascular tree system is under at much lower static pressure 

than the arterial supply system.  Because of this their walls have less elastic membranes 

and many fewer layers of smooth muscle cells.  The lumens of veins as well as the 

number of veins are much larger than those of arteries and at any given time 70% of the 

body's blood is in the venous system.  Blood that is discharged from capillary bed 

systems moves into the post capillary venules.  These venules range from 15 to 20 µ in 

diameter.  Their walls, as we described earlier, are similar to capillaries except he Their 

tunica intima has endothelial cells with a basal lamina consisting of reticular fibers and 

sometimes elastic fibers, but not the fenestrated elastic lamina found and arteries.  The 

smooth muscle cells of the tunica media are in loosely woven layers with the extracellular 

 

Figure 16: Capillaries of the liver and kidney.  These two photomicrographs 
demonstrate the difference is in the capillary flow patterns in two different tissue types.  
On the left we have a very loosely organized sinusoidal capillaries system in the liver.  
On the right is the much directed capillary system of the kidneys that form specialized 

structures called glomeruli. 

50µm 
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matrix of collagen secreted by the numerous fibroblasts (Figure 18).  Large veins that 

return the blood directly to the right atrium of the heart have a much thicker sub 

endothelial layer and you will find in medium-size veins (Figure 18).  This is due to the 

presence of fibroblasts and a network of elastic fibers.  Well developed smooth muscle 

layers can only be found in the pulmonary vein and the superficial veins of the legs but 

the tunic of media is absent in all larger veins.  This is replaced by a much larger than 

normal tunica adventitia abundant with elastic fibers and collagen.  In specialized large 

veins longitudinal layers of smooth muscle cells can be found in tunica adventitia layer.  

Another unusual characteristic seen in the tunica adventitia of large veins is the 

occurrence of cardiac muscle cells in this layer as pulmonary vein approaches the heart.  

 

Figure 17: The medulla region of the kidney.  Illustrated here is a large arteriole 
to the left caring red blood cells in its lumen.  To the right of the arteriole is a 

venule. 

50µm 
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Extracellular matrix for blood vessels forms the structural framework which supports the 

cells that compose and maintain blood vessels.  The types and amount of these material is 

specific to the type and size of blood vessel, and the region of the vessel wall in which 

the matrix occurs (Figures 18 & 19).  These extracellular support structures are protein 

and glycoproteins with specific peptide sequences that have some effects of cell behavior, 

(Merzkirch, Davies et al. 2001; Santiago, Nowak et al. 2006; Polizzotti, Fairbanks et al. 

2008; Weber and Anseth 2008)An examples is type I collagen, the glycoprotein 

tropocollagen.  It occurs in nano fibers that are 1 to 12 µ in diameter.   

 

Figure 18: Longitudinal cut through a large venule wall.  This photo 
micrograph shows a longitudinal cut through a large venule wall.  You can see 
the organizational differences between smooth muscle cell layers of the Tunica 
media.  Also evident in this micrograph is a very distinctive elastic component 

to the connective tissue layer of the tunica intima.   

50µm 
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Its molecular structure consists of galactose and glucose, 1/3 glycine and 1/3 

hydroxylproline proline.  Another important example is elastin which is composed of 

elastic fibers, 80 -160nm in diameter.  Elastin is high in glycine and contains eight other 

amino acids.  The main amino acids are desmosine and Isodesmosine.  Non polar amino 

acids are intermolecularly cross linked by desmosine which binds four elastin chains.  We 

eventually want to create a scaffold design that incorporates the structures and properties 

of these extra cellular matrix components.   

 

 

Figure 19: Large artery supplying blood to skeletal muscle.  This micrograph 
demonstrates a relatively large artery supplying blood to skeletal muscle Seen to 
the right.  What is distinctive about this blood vessel is the extensive amount of 
elastic connective tissue extending from the outer layout the tunic of media deep 
into the connective tissue of the tunica externa.  This additional elastic tissue and 
its web like pattern allows for changing stress felt on the structure during muscle 

contraction and relaxation. 

50µm 
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Need for New Techniques 

 In vitro vasculogenesis has been unable to reproduce with structural specificity the 

specialized morphological structure of capillary beds needed in such tissues as lung and 

kidney.  Scaffolds have been designed and created for blood vessels but these scaffolds 

have been used to make large straight tubes of a constant diameter (Bergers and Song 

2005; Song, Ewald et al. 2005).  Not much branching and no complex of small vessels or 

capillaries of any sort (Stitzel, Liu et al. 2006).  Many have taken an approach using 

mathematical models to compute the anastomosis patterning found in the vascular 

branching systems.  Others have created models using physiological behaviors such as 

angiogenesis to recreate the structural branching patterns found in microvasculature.  

These attempts lacked the structural design millions of years of evolution has established 

in creating vascular structures.  The realization of a need for more detailed designs is 

demonstrated in the recent use of lithography to pattern channels designed structurally to 

simulate extra cellular matrix fibers’ role in guiding cellular and cytoskeleton structural 

alignment (Sarkar, Lee et al. 2006).   

Some have created models of physiological behaviors such as angiogenesis to model 

the structural pattern of microvasculature(Szczerba and Szekely 2005).  These attempts at 

modeling the branching pattern of a vascular tree, an afferent - efferent blood vascular 

system that includes the capillary bed, fall short in being able to reproduce the structural 

specificity needed for specialized tissue structure found in tissues such as lung, kidney 

and skin.  A vascular tree scaffold is needed; one whose design can be reverse engineered 

to mimic the structural design of selected invivo vascular networks that can be 
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bioengineered both chemically and cellularly to promote the genesis of a replica vascular 

tree system which includes its capillary structures.   

It is difficult to quantify the exact volume flow rate in the vasculature system using 

mathematic equations,  ( )nAVQ =  (Volumetric flow =Velocity X (cross sectional area)), 

because in the blood stream flow forces are not constant.  The heart beats in rhythms that 

are constantly changing; the volume from a heart beat will also change; the hematocrit 

changes as vessel diameters vary; blood vessel branching is irregular and organ specific; 

the characteristics of the boundary layers are constantly changing along the blood’s flow 

path.  These are just a few of the constantly changing variables that challenge 

bioengineers to come up with models that can accurately reproduce just a fundamental 

biomechanics of circulation.  Mathematically complex equations are derived in an 

attempt to model numerically biological structures and activities such as volume blood 

flow through capillary sheets of the alveolar sacs.  Currently the velocity flow sensors 

can only determine instantaneous velocity. By the change the electrical charge measured 

between a pair of electrode across the diameter of a vessel blood from each other (Sun 

2005), an ions deflected by a magnetic field crossing the vessel in the same plane where 

the electrodes are attached has a velocity at that instant of:  

β
ν

µ =
 

Where v is the voltage due to the ions deflection, registered by the electrode β  is the 

force of the magnetic field and  is the diameter of the blood vessel at that instant.  

Another technique uses convection temperature cooling of a metal placed in contact with 
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the blood flow predicting what the relative rate of flow would be as compared to the rate 

of cooling.   

Subsequent in vitro constructed blood vascular system will form the structure 

necessary for tissue engineering.  This bioengineered structure will increase cell to cell 

adhesion interactions shown necessary for proper vessel formation (Redmond, Cahill et 

al. 1995; Weber, Rossi et al. 2002).  These methods at determining the velocity of blood 

flowing through the circulatory system are an efficient at accurately providing the 

appropriate data for structural modeling vascular tree systems.  And more efficient way is 

needed to mimic the structural specificity of circulatory systems found in tissues.  In 

addition none of these methods devised consider that each organ has a unique vascular 

pattern that is essential for the functional morphology that characterizes the cellular 

structure of each organ. 

Bio-CAD modeling and its application towards computer aided tissue engineering 

(CATE) is extremely dependent on the state of the technology in the computer imaging 

field, modeling software design and computer hardware technology.  Neither the vascular 

tree system nor any part of the human anatomy can be defined mathematically or 

traditionally through engineering terms.  Micro-CT's use of the image data acquired 

through x-ray slices of anatomical structures produces a high resolution reconstruction of 

microvascular structures.  The combination of these techniques has been used in the solid 

freeform fabrication (SFF) of tissue scaffolding.  But neither an ideal scaffold nor a 

functional transplantable organ structure has yet to be created.  The greatest success has 

been seen, because of its high acellular morphology, in trabecular bone structures.  But 
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even bone has an extremely important microvascular system which supports a cellular 

system which constantly senses stresses and re-models structures to suit environmental 

cues.  The 3-D reconstructions of serial histological sections have been shown to 

introduce two types of artifacts the first artifact being from tissue processing which 

involves fixation, dehydration and embedment.  Each of these steps introduces at some 

level a degree of distortion or loss of tissue structure.  Frozen sections have been used as 

an attempt to elude many of these processing artifacts.  But this will not correct the 

second type of artifact's scene in 3-D histological section reconstruction.  That is the 

errors that occur doing the alignment of serial sections.  The combining of micro CT 

sections with histological sections has been used to increase the detail lacking from CT 

sectioning while correcting for the error is in alignment of histological serial sections.  

These methods do not address the need for a complete microvascular system that includes 

a complete and accurate capillary bed reconstruction.  The synthetic vascular patterns 

have been synthesized using constrained constructive optimization methods.  But this 

method does not produce the organ specific microvascular patterning and needed to 

create tissue scaffolding capable of sustaining a tissues construct for transplant therapy.  

The field of computer aided tissue informatics needs the introduction of accurate 

renderings of these structures. 

While voxel based representations of anatomical images can accurately represent 

many structures in 3-D voxel based images cannot be effectively use in vascular tree 

modeling.  The 3-D volumetric model though realistic and this anatomical appearance 

does not have the geometric topological data to make it transferable for many engineering 

analysis programs.  The voxel bounding service is created most popularly by the 



48 

 

marching cubes algorithm which produces triangle based tile is a service elements each 

tile is treated as a severed polygon and then on the size and the degree of detail that you 

want to represent the resulting models can be enormously data intensive.  Attempts have 

been made a to integrate STL base models into computer aided design systems tissues 

boundary representation described by Non Uniform Rational B-Spline functions. But no 

one has developed software to construct the CAD-based models from medical images.  

Wei Sun in 2005 tested three different processing paths for their ability to bridge the gap 

between medical image data and CAD design models.   

The first processing path uses the software MedCAD to interface medical imaging 

systems with CAD platforms.  It uses three different file formats:  International Graphic 

Exchange Standard (IGES), Standard for Exchange of Product (STEP) and 

stereolithography (STL).  This software uses primitives such as planes and spheres to fit 

to the surface of the 2-D segmented slices during volumetric reconstruction.  It also uses 

and limited free-form surface modeling allowing taking advantage of B-spline’s.  The 

problem with this software is it’s incapability of re-creating geometrically complex 

anatomical structures. 

 The second processing path uses a reverse engineering interface approach which 

converts the 3-D voxel based model to point cloud data.  Geomagic  Studios by Raintree 

Inc. uses this method.  Geomagic creates point clouds and applies triangular facets to its 

surface.  The resulting surfaces can undergo further image processing removing or adding 

triangular facets in order to enhance or decimate the triangular surface or to remove or 

make addition to features.  This can be used to decrease the file size dramatically. 
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Freeform patches of NURBS can be fitted across the outer surface of the model.  Sun 

reported this to take a longer time to process but the results obtained appeared to be better 

than the other two processing paths.  The third processing path uses STLs triangulated 

models directly imported into the integrating software.  The problem with this method is 

that doing the transfer process errors in triangulation assignment will cause imperfections 

in the resulting surfaces.   

If large tissue constructs for transplant therapy are to be produced using stem cell-

based construction of regenerative structures microvascular structures will need to be 

designed that have complex hierarchical structural heterogeneity, the foundation of which 

must be the vascular tree lumen.  Once this is realized, bioactive requirements can be 

incorporated in a scaffold's design and a model of the microvascular tree system as well 

as the larger vasculature can be produced that accurately mimics the ultrastructural 

requirements for the extracellular matrix which supports the cell morphology and the 

mechanical requirements needed in these structures.  The results would be the first step in 

creating a bio blueprint for vascular tree production that mimics the description of the 

microscopic anatomy for an entire organ specific vascular tree.  Including but not limited 

in this description will be the necessary components to regulate cell division, cell 

adhesion, cell motility, cell morphology and the mechanical properties. 

The resulting vascular tree models will contain microvascular data that can be useful 

organ specific microvascular vessel primitive constructions for the creation of software 

capable of modeling the vascularization of organ structures on top of which scaffolding 
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can be designed to support the systemic cells for that specific organ.  Presently no such 

designs have been created that mimic the actual capillary bed structure. 

Scaffolding 

There are so many experimental techniques being developed today to produce tissue 

scaffolding that can be applied to scaffolding for vascular trees systems.  These 

scaffoldings are made porous, biodegradable by cellular enzymes or semi-made out of 

naturally occurring extracellular matrix molecules.  Scaffolds are constructed out of 

forms of carbohydrate polymers such as thiolated methylacrylamide chitosan to which 

peptides can be covalently attached to regulate cell adhesion and other types of cell 

behavior.   

Most promising form of scaffold production through which our method of capillary 

bed design a can take direct advantage of is Multi photon three dimensional nano 

fabrication.  These systems are being developed to use two and three photon lasers 

guided by CAD integrated systems to create patterns in photosensitive matrixes.  These 

laser systems can selectively activate the electronic excitation of sensitive atoms sending 

electrons from their ground state to excitation energy levels.  The results are 

photopolymers whose features are only restricted by the converging lasers' focal spot 

size.  Investigators are using this technique to create specific chemical morphological 

properties in micro-patterned environments.  There is a need for Bio-CAD models that 

take full advantage of these new technologies.  Our method for mimicking microvascular 

system uses Bio-CAD for the creation of microvascular systems that mimic organ 

specific capillary bed designs, merging these techniques with the dynamic cell 
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environments produced by state-of-the-art bioreactors.  Adapted these new technologies 

to our new method for tissue scaffolding designs will place us at the beginning of a new 

and revolutionary era for tissue engineering.   

Vascular Tree State of the Art 

Many have taken an approach of using mathematical models to compute the 

anastomosis patterning found in the vascular branching systems (Volkau, Zheng et al. 

2005; Volkau, Ng et al. 2008).  Others have created models using physiological behaviors 

such as angiogenesis to recreate the structural branching patterns found in 

microvasculature (Szczerba and Szekely 2005; Szczerba and Szekely 2005).  

Morphological data has been used to construct or view 3D images of vascular tree 

systems (Kassab, Rider et al. 1993; Lametschwandtner, Minnich et al. 2005; Szymczak, 

Stillman et al. 2006; Yu, Ritman et al. 2007).   

High-Quality Vessel Visualization (HQVV) is a method used on radiological data to 

(Hahn, Preim et al. 2001).  This method uses the image processing pipeline that begins by 

analyzing vessels to acquiring: volume data, vessel segmentation, skeletonization and 

diameter analysis, and graph analysis (Selle, Preim et al. 2002; Frericks, Caldarone et al. 

2004).  This follows with visualization and interaction tasks that enhanced the skeleton 

by pruning and smoothing the visualization using filtering diameter scaling expansion 

and could collapse the sub trees control and quality of the visualization output.(Hahn, 

Preim et al. 2001).  Supplementation with factors which have been determined to be 

necessary in the growth and differentiation of blood vessels (Chupa, Foster et al. 2000; 

Ehrbar, Djonov et al. 2004; Rolny, Lu et al. 2005; Teknos, Islam et al. 2005; Vogel 2005; 
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Pollard, Parsons et al. 2006; van Meeteren, Ruurs et al. 2006) need to be incorporated 

into vascular tree scaffold to help produce the desired results.  In addition, a cast of cells 

must be directed to play their role in this production stimulating through cell adhesion the 

necessary proliferation and differentiation at the proper cues (Takakura 2006).   

Producing cytokines and chemokine necessary for the needed responses and or products 

required for functional vessel formation.   

One state-of-the-art visualization technique allows vessel analysis to be carried out by 

segmentation skeletonization and graph analysis where visualization and interaction 

techniques that represent vascular structures in a hierarchical manner can be applied 

(Hahn, Evertsz et al. 2003).  Smoothing is done to remove undesirable effects seen in 

curves and branching structures re-created using these visualization techniques.  Open 

GL extrusions using a library of graphic primitives are used to produce recursive tree 

structures.  Wire frame models at polygon shaped representations use or create leaf 

branches in some techniques.  Vessels cannot be filtered based on diameter using a 

bottom-up or top-down approach controlling the complexity and the inclusiveness 

acquired vascular tree data used in constructing a model.  Different emphasis can be 

placed on a sign variables such as radius or coded data for entire branches.  This method 

of visualization of radiological images can be used to assist surgical procedures (Hahn, 

Evertsz et al. 2003).   

Another useful modeling method lumps parameters together such as those measured 

in the fluid dynamics large blood vessels.  This is a segmented at bifurcations or try 

vacations and each segment is characterized like an electrical circuit.  Characteristics 
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such as resistance, induction, and tension are used mathematically to represent 

physiological factors such as pressure and fluid flow and consequently branch by branch 

anti-vascular tree system is modeled using hemodynamics.  Using this method researcher 

can model alterations related to cardiopulmonary bypass surgeries.  Changes in 

continuous flow, temperature, hematocrit oxygen consumption, protein concentration, 

can all be measured and these simulated vascular models (Lanzarone, Liani et al. 2007) 

Non-Uniform Rational B-Splines (NURBS) models have been created from image data 

and used for patient specific iso-geometric analysis (Zhang, Laufer et al. 2009).  This 

builds on previous work using sweeping methods medial axle base mesh generation and 

NURBS mesh generation.  In this method traditionally image processing is used to 

enhance the image quality.  This is followed by iso-contouring and geometry editing, 

path extraction, path-based meshing and solid NURBS construction, from which iso-

geometric analysis can be done (Zhang, Laufer et al. 2009) In order to create the blood 

vessel from solid NURBS's patches the vessel's geometry is first extracted.    Then, using 

a thinning algorithm, a skeleton is created from the resulting point cloud image.  A 

skeleton is then swept using a sweeping method, which uses a templated circle at each 

cross-section.  Branching templates can be created demonstrating bifurcations try 

vacations with a number different variations (Zhang, Chapman et al. 2005).  In the cross-

section meshes fluid and solid regions can be identified and giving characteristics for iso-

geometric behaviors.   

A third design approach for modeling vasculature integrates shapes and biomedical 

attributes (Li, Regli et al. 2007).  Normally computer aided vascular tree models come 

from either biomedical imaging of discrete shapes or physiological models that rely on 
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biological understandings of blood vessel growth.  Instead of modeling solid segments 

with different attributes the vasculature is represented as tubular structures of varying 

degree of complexity.  The goal being the creation of parametrically designed vascular 

scaffolds which can supply required nutrients and oxygen supply to larger tissue 

scaffolding.  The biomedical models are represented using skeletons, implicit designs, 

boundary representations, voxel based representations, and mesh based models and 

volume sweep modeling. The vascular tree is represented on two scales, macro and 

micro, each having its limitations (Li, Regli et al. 2007).  The macro scale representation 

uses nodes and edges to create a vascular tree in a structural hierarchy.  A sweep is 

applied to generate a volume representation which alone cannot support a secondary 

tissue scaffold for functional tissue growth.  The micro scale representation must be 

confined to a sub-boundary within the generated macro scale vasculature.  This sweeping 

procedure to edges between nodes of micro scale vascular incorporates the basic features 

of vascular system and their relationships (Li, Regli et al. 2007).  Features such as blood 

flow rate, viscosity, segment length, blood vessel radius, changes in blood pressure and 

resistance to blood flow are all incorporated into the functions computed in a sweeping 

volume representation of a vascularized structure.  NURBS curves are fitted to complex 

branches of the microvasculature.  Prior representations use straight lines to represent 

each edge between nodes (Li, Regli et al. 2007).  Updated vascular tree systems using 

NURBS curves as a skeleton allows parameterization and provide smooth fitting 

daughter branches from each of the originating nodes(Orazi 2007).   
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Nanoparticle Sustained Release Systems 

Nanoparticles such as quantum dots, nanotubes, and nanowires have been receiving a 

considerable amount of attention recently for their unique properties that offer potential 

use in bioengineering, therapeutics, and more specifically drug delivery and targeting 

(Ozkan 2004). Based on their size, colloidal drug-polymeric sustained release systems 

can be classified as microparticles (1 to 1,000 µm) or nanoparticles (1 to 1000 nm). 

Compared to the microparticles, nanoparticles offer the advantage of higher cellular 

uptake. In addition, nanoparticles can be administered via the intravenous and 

subcutaneous routes with minimal irritation.   

Natural or artificial polymers that are biocompatible and biodegradable are often used 

for the preparation of sustained release systems. Such polymers include poly (lactic acid) 

(PLA), poly (lactic-co-glycolic acid) (PLGA), acrylic polymers or copolymers, 

hyaluronic acid derivatives, and alginates. Among the available biodegradable polymers, 

the PLA and PLGAs are the most widely used. Within the body, the lactide/glycolide 

polymer chains are cleaved by hydrolysis to form natural metabolites (lactic and glycolic 

acids), which are eliminated from the body through the Krebs cycle. Depending on their 

composition and molecular weight, the PLA and its copolymers with glycolic acid 

provide degradation rates ranging from months to years (UB Kompella 2001). In our 

model these sustained release systems will be used to encapsulate growth factors for 

systemic delivery to the ischemic tissue. Our primary vehicle will be in the form of 

alginate nanospheres. Alginate is a naturally derived polysaccharide that is typically 

derived from seaweed. It is a biocompatible polymer that is widely used in the food 

industry. Additionally applications in cell transplantation have been developed for the use 
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of cells such as chondrocytes and islets. Vascular endothelial growth factor (VEGF) and 

other growth factors are readily incorporated into nanospheres and can release growth 

factors anywhere from days to weeks. (Sheridan, Shea et al. 2000)   

Growth Factors 

Until, recently VEGF was the only growth factor proven to be specific and critical for 

blood vessel formation. VEGF was initially defined, characterized and purified for its 

ability to induce vascular leak and permeability, as well as for its ability to promote 

vascular endothelial cell proliferation. Compared to its more recently discovered 

counterparts, much more is known about VEGF. It is now quite clear that that VEGF is 

such a potent and critical vascular regulator that its dosage must be delicately regulated 

spatial, temporal, and quantitative manner to avoid vascular disease.  

In the peripheral nervous system regeneration and gradual functional restoration 

occur following peripheral nerve injury. Recent functional and expression studies of basic 

fibroblast growth factor (FGF) and its receptors have emphasized a physiological role of 

these molecules in the peripheral nervous system. Exogenously applied basic FGF 

mediates rescue effects on injured sensory neurons and supports neurite outgrowth of 

transectioned nerves. FGFs promote mitogenesis of mesoderm- and neuroectoderm- 

derived cells and is involved in regulating diverse processes like proliferation and 

differentiation during embryonic development and mediates effects in the adult organism 

on maintenance and during tissue repair. (Grothe, Haastert et al. 2006)  

Platelet derived growth factor (PDGF) has not been extensively studied with respect 

to its neurogenic potential in vivo. In studies investigating growth factors that could 
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potentially be used to regenerate dompaminergic neurons in Parkinson’s disease models, 

PDGF is thought to be a good candidate since it appears to play an integral role in the 

normal development to the central nervous system. The delivery of PDGF to the 

cerebroventricles preceding an ischemic insult can protect against neuronal degradation. 

The correlations between these models and our study of treatment of ischemic stroke also 

make PDGF an ideal candidate for drug encapsulation and release from our 

bioengineered vascular tree. (Mohapel, Frielingsdorf et al. 2005)  

While quite a bit of work has been done using biocompatible materials to form 

scaffold for blood vessel formation (Kilian, Alt et al. 2005; Stitzel, Liu et al. 2006), a 

material needs to be selected that can meet these specialized needs.  A bioengineered 

vascular tree system can be a life supply line for stem cells in their development into the 

tissues and organ systems of the human.  Using this novel system of blood vessel 

production will make the engineering of all types of three dimensional tissue structures 

possible using cell cultured in this novel stimulatory bioreactor system 

The novelty of our process is that it combines image data that represents both the 

macroscopic and microscopic domains of tissue structures.  Then it uses that data for an 

entirely new concept, the production of Bio-CADs that render structures which are 

designed down to the microscopic level to successfully interface with cells such as to 

support, recruit and influence their behavior, guiding their mimicking of naturally 

developed tissue structures.  In addition, this novel process converts these Bio-CAD 

derived models into data files that interface with programs such as Solidworks which 

drive 3D fabrication and micro patterning equipment.  With this process we can create 
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tissue scaffolds, and or molecular patterned structural pathways which replicate the Bio-

CAD structural design, compelling and supporting the genesis of reversed engineered 

vascular tissue structures (Kobayashi, Miyake et al. 2007).   

Functional Vascular Tree Scaffolds and 3D Tissue Structures  

The generation of biological tissues is a natural phenomenon that requires the cells 

which comprise the tissues to orchestrate its engineering.  Much of this process is due to 

interactions between cells and their surrounding environments (Davis and Senger 2005) 

which in itself is produced by cells.  This extracellular matrix supplied by cells is a 

product of millions of years of adaptive evolution leading from single cellular to 

multicellular organisms. The key structure which allowed evolvement of multicellularity 

from small unicellular aquatic organisms to multicellular organisms a few hundred 

microns in diameter, to large animals with organs, was the evolution of a vascular 

system.  The key structural design by which Bio-CAD can play an essential role in 

designing, one which once constructed can open up tissue engineering’s therapeutic 

potential, is also the vascular tree system (Mertsching, Walles et al. 2005; Schreiner, 

Karch et al. 2006; Linke, Schanz et al. 2007).   
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Chapter Three 

Reverse Engineering a Vascular Tree 

Current Approach 

Currently researchers are trying to produce artificial blood vessels comprised of 

living cells.  In creating these vessels it is their aim to produce a living structure that the 

ability to heal wounds, remodel vasculature, produce receptor-mediated bioactivity and 

produce normal blood vessel yields.  Techniques researchers have used to realize this aim 

approach the creation of structural scaffolds using natural biomaterials such as collagen 

and fibronectin or by using biodegradable polymers such as polyethylene glycolic acid.  

Investigators are taking various approaches at creating structures comprised of vascular 

cells that have the proper receptors capable of the appropriate responses to environmental 

stimuli produced in healthy in vivo systems.  Bioreactors are used to provide a nurturing 

environment through the use of a pulsated flow to induce cellular reactions that will 

change the mechanical properties of the artificial blood vessels as they are being created 

in vitro.  The pulsated flow is to simulate blood flow that the vessel would experience if it 

was part of a cardiovascular system.  The simulated blood flow provides forces on the 

vascular wall and inducing the cells within to compensate by strengthening the 

extracellular matrix surrounding the cells.  This prepares artificial blood vessel for the 

environmental forces that would experience once transplanted to a cardiovascular system.   
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To date the scaffolding being used to create blood vessels had lumens that are nearly 

a thousand times larger in diameter than the average capillary.  This makes their use as 

support structures for 3-D tissue scaffolds for transplant therapy and large wound healing 

impractical.  These so called micro- blood vessels have been created as tubes or as sheets 

that are later rolled into tubes.  When sheets are used they are sealed with cells 

characteristic of its destined position in the vascular wall.  These cells are destined to 

become endothelial cells, smooth muscle cells, fibroblasts or pericytes depending on the 

diameter of the proposed vessel, their position in the vascular wall and whether the 

destined vessel is to be part of the arteriolar or the venous system.  The scaffold's can be 

made of natural occurring substrates or synthetic biodegradable polymers.  The 

mechanical properties of natural substrates such as Collagen require additional support 

with materials like Dacron in order to produce the mechanical properties needed to 

support the hydrostatic pressure experienced by blood vessels and cardiovascular system.  

The synthetic biodegradable polymers are built with the mechanical properties necessary 

without additional support.  A few examples of these biodegradable polymers are 

polyglycolic acid, polyhydroxyalkanoate, lactic acid and polyhydroxygluconate.  The 

mechanical properties necessary for the vascular wall to function properly are approached 

by using micro porous patterns and photolithography produce channels to create 

specifically aligned vascular smooth muscle cells during the construction of the tunica 

media (Sarkar, 2006).   

The cells used to seed scaffold structures can be autologous or allergeneic and come 

from numerous sources.  Examples of some sources are existing blood vessels such as 

bovine aorta, human umbilical cord veins and the canine femoral artery.  Tissue 
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structures such as skin, skeletal muscle, cardiac muscle, adipose tissue, bone marrow, 

blood including umbilical cord blood and embryonic tissues.  These structures provide a 

range of cell types with different potentials for developmental differentiation and 

lifespan.  The cell types include endothelial cells, smooth muscle cells, vascular smooth 

muscle cells, endothelial progenitor cells, smooth muscle progenitor cells, myo 

fibroblasts, adult stem cells from haemopoietic tissues, mesenchyme, adipose tissue and 

embryonic stem cells (Sales, 2005).  In addition these cells can be genetically engineered 

to over express or fail to express proteins orchestrating a cell’s ability to perform 

necessary roles in the development of the vascular wall production.  This includes the 

enzyme telomerase that maintains telomeric length during cell division, allowing 

continuous mitotic passages without the malfunctions that occurs during the chromosome 

separation of cells from long lineages; significantly increase the lifespan of engineered 

tissues (Rhim, 2006). 

Another type of scaffolding that has been seeded with cells originates from the tissue 

structures that have been decellularized.  These acellular structures can originate from 

blood vessels and other tubular structure such as intestines.  They are taken from animals 

and humans and both have met with success.  But again just the fact these structures need 

to be manipulated by hand preclude them from being any size close to what is needed for 

a capillary bed structure (Kakisis, 2005; Cho, 2005; Borschel, 2005).   

Without the use of any scaffolding these so-called microvessels have been created 

from co-cultures of fibroblasts and smooth muscle cells taken from human umbilical 

cords vasculature (Kakisis, 2005).  These cells are allowed to grow for 30 days where 
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they form sheets of cells surrounded by extra cellular matrix.  These sheets are then rolled 

into tubes and used to function as the tunica media layer (Figure) in this method of the in 

vitro engineering of a blood vessel.  The tunica adventitia layer (Figure) of the blood 

vessel is simulated in form from pure a fibroblast culture added to the outer wall of the 

previously synthesized tunica media, after its stabilization in culture.  After another week 

is stabilization the center piece supporting the rolled up sheets of cultured tissue is 

removed and the resulting lumen seeded with endothelial cells taken from human 

umbilical cord veins (Kakisis, 2005).  This procedure produce well organized 

macrovascular like structures with very good mechanical properties. 

Vascular scaffolds have been developed based on patient’s arterial configuration 

(Uchida, 2007) but these were large structures not intended to substitute for capillary bed 

systems and their ability to provide a nurturing environment for organ tissues.  In this 

case the CAD design was used to reconstruct the carotid artery diameter nearly 100,000 

times that of a capillary.  Although researchers here discuss a size limitation of 1 mm in 

diameter even so the structure is still nearly a thousand times too large to represent the 

capillary feature.   

An entirely different approach at using scaffolding to produce microvascular 

structures is seen in the use of collagen I to replace injured myocardium.  This method 

takes advantage of cryo lesions and the body's foreign body reaction which uses 

neutrophils and macrophages to pave the way for neovascularization, collagen deposition, 

and matrix metalloproteinase's (van Amerongen, 2006).   
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Coronary Arterial Trees 

The generation of vascular tree models of the Coronary system is a popular area of 

research.  This is due to the needy for virtual models of the human heart that can reflect 

perimetric changes in blood flow to create pathological conditions and model proposed 

surgical procedures.  Some very impressive models of the coronary arterial tree have 

been created to combine physiological factors, imaging data and mathematical 

reconstructions.  Research has produced correlations between the structural anatomy of 

coronary vessels and the dynamics of blood pressure, flow and volume.  Researchers are 

using these correlations to develop mathematical approaches for computing blood vessel 

branching patterns, vessel luminal diameter and blood vessel wall thickness (Wischgoll, 

2007; Kaimovitz, 2005; Szymczak, 2006). A very complete study was done on the 

relationship between the biological variations in branching patterns and blood perfusion 

in stochastically generated coronary artery trees (Denkelman, 2007).  The author resolves 

differences between Strhler algorithm which defines ordering based on vessel diameter 

and Van Bavel's model which is based on the measured heterogeneousity of the vascular 

tree's branching pattern's.  The results show that different branching rules affect the 

perfusion parameters and can be used to predict variation in segment length trees, 

vascular volume and can be used to predict corresponding physiological states of the 

vascular blood flow.   

Based on detailed anatomical data 3-D models of vascular tree structures have been 

created in rectangular slab geometry using parallel simulated annealing algorithms 

(Kaimovitz, 2005).  The results of these algorithms were optimized by setting constraints 

based on morphometric features of the Coronary vasculature.  The resulting vascular tree 
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systems were then mapped on the surface of a modified sphere representation of the 

heart's surface adapting the tree's structure to fit the surface.  Kaimovitz et al used a   

novel method for determining vessel diameter along bifurcations with results consistent 

with the morphological statistics of the measured data on corresponding structures.  The 

more recent work coming from Ghassan S. Kassab research group have sought to model 

the capillary systems of the Coronary vasculature.  Experimental investigation on 

capillary structures is not complete.  Engineering a capillary system create a challenging 

visualization problem for a number reasons (Wischgoll, 2007), the biggest being the need 

for almost a mile of geometrical representations.   

In order to tackle this problem geometry reduction and occlusion culling techniques 

were use to reduce the number of triangles set forth in a reading frame at a given time 

while maintaining the full complexity of the entire model.  The results were increased 

performance of interactive visualization using novel algorithms that are anatomically 

based, integrating structural properties with changes in physiological conditions.  The 

resulting models are extremely complex, with one tree containing 4.3 million vessel 

segments, at full resolution contained 77 million triangles.  Using different collusion 

culling techniques and depending on the view angle, parts of the vascular tree could be 

rendered at very low resolution, reducing the number of triangles up to 56% (Wischgoll, 

2007).  Even still the culling process was expensive making rendering these vascular tree 

structures no easier.  Computer hardware and software available at the time of this 

publication severely limited the ability of this research group and other groups 

performing similar geometrical reconstructions to render these vascular tree structures.  

Many tricks have been used such as a creation of occlusion buffers using OpenGL with 
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visualization service such as a Sun Fire V880z, applying out of core and other high-end 

GPU's and increasing the amount of main memory enabling the whole geometric model 

to be stored during computer processing.   

A more image based approach in reconstructing 3D coronary vessel trees by 

Szymczak uses algorithms to create and extract maximums in intensity ridges to represent 

the outer surfaces of blood vessels captured in 2D radiological image sections 

(Szymczak, 2006).  This method was in effective at creating a complete vasculature 

because of its inability to represent low intensity structures.  Results are models with gaps 

in their structure and suspended pieces of blood vessels.  With the use of filters some of 

these errors were removed or corrected but the resulting model nevertheless lacked a 

complete representation of the coronary of vessel tree sought for modeling.   

Electrospinning technology is being used to create tubular scaffolds for blood vessel 

engineering.  Anthony Atala's group at Wake Forest studied the use of type 1 collagen 

taken from skin and elastin taken from ligaments of the neck blended with the synthetic 

polymer, poly D,L - lactide - glycolide (PLGA), to create tubular vascular scaffolds less 

than 5 mm in diameter, through electrospinning.  Atala's group found that these blends 

were safe for in vivo use, eliciting no local or systemic toxicity and demonstrated 

mechanical properties comparable to the native vessels that are designed to replace 

(Stitzel, 2006).  One of the benefits of electro-spun scaffolds is their features size which 

is on the nano meter scale.  This makes them in the same diameter range of extra cellular 

matrix fibers, collagen and elastin, from which they are being made and designed to 

simulate.  Research has shown that endothelial cells and smooth muscle cells show 
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favorable responses to structures of the size demonstrated here in the form of improved 

adhesion during the process of seeding cells into scaffold structure while being cultivated 

in a bioreactor for cellular development.  The results of this electro-spun scaffolding 

created vascular like tubes with mechanical properties that resist 12 times the systolic 

blood pressure experienced by normal vessels of the same diameter.  In addition minimal 

inflammation occurs that soon subsides and thrombosis though not discussed in this paper 

has been shown to be minimized using special surface coatings or genetically engineered 

endothelial cells expressing factors that resist fibrin binding. 

Optical lithography is being used to pattern capillary networks with the goal of 

creating a microvascular structure to support cell viability in 3-D engineered tissue 

scaffolds by providing oxygen and nutrients to its internal structures (Kobayashi, 2007).  

This method is similar to traditional total lithography used in the fabrication of micro 

electrical mechanical systems.  In this case a titanium dioxide photo-mask was created on 

top of a chromium quartz mask with slits around 60 µ wide and 300 µ apart.  The 

resulting mask was used to create hydrophobic patterns on a fluoro -alkyl -silate substrate 

using UV irradiation through the mask (Kobayashi, 2007).  The patterned substrate was 

then cultured with endothelial cells that were attracted and attached to the hydrophobic 

regions.  Substrate then was placed on top of Matrigel and incubated for 24 hours after 

which the substrate was removed transferring the patterns cells into the extracellular 

matrix solution MatrigelTM along with the cell culture medium formulated to stimulate a 

vascular growth.  There was some evidence that capillary type structures formed and 

express vascular endothelial cell cadherins at intercellular junctions.  
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The use of hydrogels to form structural scaffolds for cellular growth is becoming a 

very hot and promising procedure.  Through physical, covalent or ionic interactions 

polymer chains are cross-linked together with the ability to absorb and maintain aqueous 

environment.  One promising polymer is the polysaccharide chitosan which is obtained 

from the exoskeleton of shrimp.  It is a naturally occurring poly-electrolyte which is 

biodegradable.  Cross-linking is formed with chitosan by the repeated alternating steps of 

sodium hydroxide neutralization and rinsing with water.  This causes the neutralization of 

ammonium ions to free amine groups.  This removes ionic repulsions between molecules 

making way for hydrophobic interactions and hydrogen bonding between polymer chains 

(Elisseef, 2008).  Good understanding of these reactions the mechanical properties of 

polysaccharide hydrogels can be manipulated by altering the monomeric molecular 

structure of polymers or the degree of neutralization of the acidic groups present in the 

polymer chains.  In addition to mechanical properties, other physical properties can be 

controlled such as the amount of water present in the hydrogel, the thickness of the 

resulting hydrogel structure and the density of cross-links occurring between chains 

(Elisseef, 2008) all important parameters whose modulation can be used to regulate cell 

motility, cell shape, proliferation and differentiation.  In addition of interrupting the 

neutralization process an interphase zone is created separating the neutralized hydrogel 

from polysaccharide chains in their pre-neutralized gel form creating a separation or 

enters membrane space (Elisseef, 2008).   Repeated cycles of this procedure can be used 

to create multilayered hydrogel structures of different shapes such as tubes and spheres 

(Elisseef, 2008).   
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Problems with Current Approaches 

There are different fronts attacking the vascular tree problem.  Initially researchers 

made tube structures out of biocompatible materials already approved for use by the food 

and drug administration.  Then they seeded these structures with any kind of cells they 

could get their hands on that were remotely similar to ones you would find in a vascular 

wall.  Next they tried to find specialized cells that would differentiate into specific cell 

types that belonged in the blood vessel wall.  Then when they could not obtain the 

cellular morphology expected, intense research began on the molecular factors that 

regulated cell morphology and behavior.  Then there was a problem with the 

inflammatory response by the host to these devices absorbing the scaffold's structure 

replacing it with fibrous connective tissue and the vascular lumen losing its patency due 

to thrombosis.  Therefore more attention was placed on material used for creating the 

scaffold itself.  Larger vessels fed in bioreactors prior to in vivo implantation soon saw 

the internal cellular components die from lack of oxygen and nutrition before the host's 

tissue could react to neovascularization of the implant internal structure.  So 

experimentation began in scaffold pore size, to trying to find a happy medium that would 

allow cellular attachment as well as the movement of extracellular fluid to provide 

needed oxygen and nutrients until microvasculature was established.  This turned out to 

be a futile approach yielding little success but a lot was learned about cellular responses 

to different features sizes and material types.  Recently there has been a realization of the 

need for more detailed designs as is demonstrated in the recent use of lithography to 

pattern channels designed structurally to simulate extra cellular matrix fibers’ role in 

guiding cellular and cytoskeleton structural alignment (Sarkar, Dadhania et al. 2005).   
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While, as described earlier, many researchers are addressing the cellular organization 

found in the different layers of the vascular wall.  But their methods are course and not 

effective at addressing the core problem for tissue engineering, even of the larger 

vasculature.  The core problem is that lack of a capillary bed system to provide oxygen 

and nutrients as well as developmental factors necessary for both the basic nurturing of 

the surrounding cells and the support for vasculogenesis.  Some excellent work is being 

done at combining theoretical measurements with physiological and mechanical 

properties to produce models of microvascular-like structures for physiological 

simulations.  Where simulations of the larger vasculature gave some productive results 

for large-scale needs, the actual feature sizes of the capillary and its bed precluded the 

acquisition of these types of data by methods used for the macro vasculature.  Of all of 

radiological methods used to obtain structural data on the anatomy of the cardiovascular 

system, only fairly recent studies used in micro computer tomography have come close to 

providing detailed and accurate information on the structure of complete capillary bed 

systems (Heinzer, Kuhn et al. 2008).  But even this study has serious issues in contrasting 

complete capillaries systems using the present methods.  A different problem, as 

described above, the actual size of the detailed models of capillary systems is 

confounding researchers using theoretical models to represent these structures.  The basic 

problem being the incapability of computer hardware design software to handling the 

enormous size of models created to reflect accurately the complete capillary bed 

structure.   
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Solutions Proposed to Date 

The recent use of lithography to pattern channels (Sarkar, Lee et al. 2006; Figallo, 

Flaibani et al. 2007) designed structurally to simulate extra cellular matrix fibers’ role in 

guiding cellular and cytoskeleton structural alignment in the formation of a vascular wall 

(Medvedev, Samsonov et al. 2006) represents the first attempt at microscopically 

designing the structure of vascular scaffolds to structurally mimic natural vasculature.  

Using algorithms of constraint construction optimization  computer generated model have 

been created to supply analytical models of hollow organs as well as finite element 

analysis of image generated triangular mesh models (Schreiner, Karch et al. 2006).   

These are all interesting ideas but none are true solutions to the problem of building a 

complete and accurate model of the capillary bed system capable of being use to fabricate 

a vascular structure which accurately mimics the necessary interstitial relationship 

maintained by the capillary bed on organ by organ bases.  Without this relationship it will 

be impossible to engineer tissue structures that can fully represent the function of any 

organ and without this function any such tissue is rendered useless for placement therapy.   
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Chapter Four 

Vascular Tree Modeling 

Research Design 

We have a novel to approach to designing tissue scaffolds:  The reverse engineering 

of tissue’s cellular structural framework, its extracellular matrix, using its natural tissue 

structure as a model.  Our first project is to successfully design a scaffold for the 

vasculogenesis of a complete vascular tree system.  However, the availability, through 

diffusion and active transport, of molecules and atoms necessary for cell maintenance, 

growth and behavior is a central problem limiting 3D tissue growths.  Because of this 

limitation, we have failed to stimulate significant 3D tissue growth in in vitro systems, 

and our attempts at the regeneration of damaged tissues result in avascular scarring.  Thus 

far, scaffolding for vasculogenesis have consisted of crude tubular macro-designs that 

lack micro-capillary structures and therefore can have no direct impact on tissue genesis 

or regeneration.  In order to make these substances available, a vascular tree scaffold 

needs to be designed to include a configuration that supports the growth of a properly 

structured capillary bed.   

Using a reverse engineering approach, we designed scaffolding for vascular tree 

development, modeled from a natural vascular tree.  Extensive literature that 

demonstrates techniques for creating a vascular cast exists.  Through literature, we will 

identify the best technique for obtaining images of these microvasculature casts that can 
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be used to reconstruction a digital representation of a 3D micro-vascular tree.  We will 

obtain access to these tools and use them to perform the necessary techniques to obtain 

images of the cast of micro-vascular system, and we will use the images to construct 3D 

digital model.  The model will be constructed for use in stereolithography techniques. 

By reverse engineering the natural designs of microvasculature tree systems, a 

scaffold can be designed for engineering large 3D tissue structures for clinical use.  Using 

a reverse bioengineering approach, we will model a complete afferents-efferent blood 

vascular system that includes its capillary bed system, necessary for the development of 

the cells surrounding a 3D tissue construct.  In order to accomplish this for the in-vitro 

micro computer tomography (micro-CT), we acquired volumetric image data to 

reconstruct 3D image for modeling the microvasculature.  The capillary bed’s design 

configuration must interface precise morphological specifications for the given tissue 

structure.  This requires critical attention to the capillary bed’s microscopic relationships 

 

Figure 20: 3D tissue reconstruction flow chart. 
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with surrounding cells.  The decomposition of the structural elements of the capillary bed 

in that specific tissue structure is required.   

A vascular cast that represents the lumina of the corresponding vascular the tree 

system will be used for acquiring image data from the structure of the corresponding 

vascular tree system.  Using a cast made of the lumina of the appropriate vascular tree, a 

scaffold can be constructed to replicate that vascular tree’s framework. 

New methods are needed to develop a bimolecular scaffold that supports a wide array 

of cellular functions and is not rejected by the host.  For nearly twenty years, studies of 

the 3D structure of blood vessels (Schraufnagel 1987) and other luminal  systems found 

in the body (Hojo 1993) have produced techniques that use a blend of vinyl chloride 

latexes, consisting of a plasticized vinyl chloride copolymer with a vinyl chloride 

copolymer, to create a latex replica of the  microvasculature system, demonstrating the 

luminal surfaces of these structures.  

In this initial project, and through the use of an interdisciplinary approach, the 

vascular tree scaffold described above will be constructed on a scaffold of its own.  The 

vascular tree will be perfused with heparinized Ringers solution.  Latex or similar resin 

perfused into MCA and subsequently polymerized in its lumen will serves as the subject 

for a computer-assisted design model (Fabris, Cadamuro et al. 2007).   

For vascular casting, the selected material must begin as a viscous liquid and 

polymerize into a porous, fibrous, biocompatible network similar to the successful 

scaffold previously described.  It must allow various degrees of layering, permit cell 
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migration, contain the necessary growth factors found in extra cellular matrix of 

developing blood vessels (van Meeteren, Ruurs et al. 2006), and be suitable for the 

engineering of an in vitro cellular replica of the vascular tree.  

In our preliminary work, we discovered that the erosion cast was very fragile, making 

it very hard to keep the capillary networks intact when handling the structure.  The 

subsequent 3D image scanning technique presented a monumental task. 

The acquisition of images is needed in order to gather data for the bio-CAD 3D 

reconstruction of the corresponding 3D vascular tree.  An entire vascular tree system can 

be digitally imaged and the data captured for 3D rendering.  In order to create a bio-CAD 

rendering of a sound vascular tree system, we need to obtain data through reverse 

engineering that is representative of the entire vascular tree system.  Only through this 

method can we precisely measure and completely recreate the structural dimensions of 

such biological systems, making functionality under its natural fluid flow condition 

possible.   

File size limitations initially prevented us from directly obtaining the entire image 

data needed to capture the complete vascular tree structure from one image reconstruction 

technique.  The area that can be imaged and reconstructed by micro-CT is also limited in 

size when high-resolution instrumentation is used.  This makes the area of the tissue 

organs scanned smaller than the area of most complete vascular tree systems.  Micro-CT 

results published in the current literature demonstrate the lack of capabilities to resolve 

completely and accurately the 7 to 10 µ diameter tubes that make up the capillary beds of 

vascular tree system.  These resolution limitations of micro-computer assisted 
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tomography imaging systems make the complete capture of image data for the capillary 

bed of a vascular tree very difficult – almost impossible – even with the latest equipment.   

In order to reverse engineer a vasculature tree using micro-CT image data, image data 

for the capillary networks that are missing because of resolution limitations will have to 

be supplied through other means.  We will use image data obtained through the 

reconstruction of serial sections obtained by histological techniques, taken through a 

reference plane created during tomography scans.  Reference points will be created in 

scanned tissue that corresponds with section tissues.  The resulting images will be 

imported into bio-CAD software, where we will connect the afferent and efferent 

arterioles and venules and mesh structures obtained by micro-CT with mess structures 

obtained through the reconstruction of serial tissue sections of the capillary bed systems.   

The reconstructed image data sets from micro-CT and serial section, which create a 

complete bio-CAD model, will give us a complete 3D layout of the inner wall of the 

vascular tree system of interest.  Using histological data on the vessels' wall thicknesses 

along the length of it structure bio-CAD can be use to render, on top of the inner wall 

layout, a design for a structural scaffolding of the seeding migrating proliferating cells. 

In the future we hope to converted image data from micro-CT and re-constituted 

serial tissue sections to 3D wire frame models and merged together using bio-CAD 

software.  Three-dimensional prototyping is a very is established field of engineering that 

has given us the ability to bring virtual models into physical existence.  The mathematical 

models currently being used to imitate vascular tree systems fall extremely short of 

accurately mimicking nature’s designed vascular trees. By using actual image data to 
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illustrate size dimensions and other complexities of natural structures, we can create, 

through reverse engineering principles, designs that mimic these natural structures.  

These designs can then be imported into 3D prototyping software in a created structure.  

However, limitations are found in the creation of microstructures.  These limitations are 

due to the molecular structure of structural materials, the prototyping technology – which 

is quickly improving – and the details of the design.  By using actual image data obtained 

directly from vascular tree systems, we can create a highly detailed model of its structure.  

Such structures could be extremely valuable in the 3D fabrication of scaffolds to be used 

for the tissue engineering of complete vascular tree systems.  By combining a micro-CT 

study of vascular tissue with the reconstruction of thin serial tissue sections of capillary 

beds, the resulting bio-CAD rendering can be used as a structural design for the 

scaffolding on which a vascular tree can be constructed.   

Before we began putting the digital model together in bio-CAD, we developed a new 

approach.  We needed an efficient way of isolating desired capillary lumen structures 

from other cellular structures in the surrounding tissues, thereby decreasing the 

information being digitalized in the process of 3D reconstruction.  This is necessary to 

keep down the file size of resulting data sets, lowering the computer processing hardware 

strains and requirements.   

Merging image data obtained from micro-CT with image data obtained from the 3D 

reconstruction of tissue sections requires careful attention to section orientation.  We 

must match the sectioning plane used in micro-CT acquisition of images with the 

sectioning plane used to obtain histological sections the vascular tree of interest.  In 
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addition, reference points need to be created to match the micro-CT image data with the 

beginning of histologically reconstructed image data.  In order to accomplish this, one 

way would be to explore the use of fluorescent dye as part of the compound used to fill 

and opacify the microvascular system.  We can then use fluorescent microscopy to catch 

the image data of the serial sections.  This will give us a high-contrast, 2D image of 

capillary lumen structures against a black background for image capture and 3D 

reconstruction of the capillary bed.   

Tissue containing the vascular tree of interest, processed for light microscopy and 

using histomorphometry imaging software, the capillary bed and its arterioles and 

venules can be digitally selected and contrasted with the surrounding tissues.  The 

resulting montage images could then be stacked in the Z plane and aligned in the X and Y 

directions using three fiduciary marks, recreating a 3D volumetric image of the original 

capillary bed.  This image could be further processed into a virtual wire frame model.  

Models will be replicated and connected to the vascular tree reference points identified in 

the CT scan established before tissue sectioning.  In order to merge the data obtained 

from the two different image acquisition techniques, we could create reference points in 

tissue for the biological reconstruction of data sets collected using two different image 

acquisition techniques.  These reference points can be pre-selected, natural branches in 

the vascular tree systems that occur before micro-CT’s resolution capabilities diminish.  

Another solution could be the use of radio opaque beads of a constant diameter, which 

are just above the resolution capabilities of micro-CT.  These beads can be perfused into 

the vascular system and mixed into the radio opaque solution used micro-CT imaging.  

These can be introduced into the vascular tree only after a complete profusion of the pure 
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radio opaque solution has been completed.  The beads will proceed only to a point at 

which the vascular tree is still resolved using micro-CT.  

The reverse engineering of a vascular tree system can be a life supply line for stem 

cells and other cell types during their development into tissues and organ systems, 

whether its for regeneration or transplants.   In order to build such a vasculature tree 

system, one must first come up with a way to design a model that replicates the 

dimensional complexities found in the naturally occurring system.  This is what we 

intend to do. 

 

Data Acquisition 

The application of computer science and engineering technology into medical 

sciences has led to the bio-CAD refinement of many medical devices, such as artificial 

joints, bone implants, vascular stents and prostheses (Sun 2005).  These devices are 

mechanical in their application and have made vast improvements over their predecessors 

designed before the advent of computer technology, which aided the design and 

manufacturing processes (Sun 2005; Witkowski, Komine et al. 2006; van Lenthe, 

Hagenmuller et al. 2007; Wang and Tang 2007).  In contrast, the use of bio-CAD to 

engineer tissue structures has not yielded products with comparable success in 

physiological applications (Sun, Darling et al. 2004; Sun, Starly et al. 2004; Sun, Starly et 

al. 2005).   



79 

 

The generation of biological tissues is a natural phenomenon that requires the cells 

that comprise the tissues to orchestrate its engineering.  Much of this process involves 

interactions between cells and their surrounding environments (Davis and Senger 2005) 

that have evolved for millions of years, from single cellular to multicellular organisms. 

The key structure in vivo which allowed the evolution of multicellular organisms from 

small, unicellular aquatic organisms to large animals with complex tissue structures is the 

vascular system.  Clearly, the reconstruction of complex tissue structures in vitro would 

allow for significant therapeutic applications. This bioengineering potential, however, 

will not be reached without first reconstructing the vascular tree in vitro (Mertsching, 

Walles et al. 2005; Schreiner, Karch et al. 2006; Linke, Schanz et al. 2007) from 

complete and accurate models of the capillary bed.   

 

Figure 21: Microfiltm volumetric STL.  STL constructed from Microfil-perfused 
vascular networks in mouse kidney.  Image pixel size 8.89 µm. 

50µ 
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Micro-computer tomography (micro-CT) is commonly use to generate 3Dtissue 

structures, although there has been limited success in using this method for the 

reconstruction of complete and accurate capillary beds (Ikura, Shimizu et al. 2001; 

Badea, Hedlund et al. 2006; Badea, Hedlund et al. 2007).  While micro-CT has the 

resolving potential to create 3D tissue structures (Sasov and Van Dyck 1998; Parkinson 

and Sasov 2008),  limitations arise due to the nature of contrast agents used in this 

technique (Badea, Hedlund et al. 2006) because they allow the for the demonstration of 

large vessels adequately but do not result in high-resolution imaging of small vessels, 

such as those found in capillary beds (Elleaume, Charvet et al. 2002; Hainfeld, Slatkin et 

al. 2006; Litzlbauer, Neuhaeuser et al. 2006).  

A technique to overcome the difficulties with micro-CT contrast agents hampering 

complete visualization of capillary bed systems is the utilization of corrosion cast 

methodology, such as Batson’s methylmethacrylate corrosion casting (BMCC) 

(Polysciences) because of its proven success in creating durable vascular casts (Gross, 

Joneja et al. 1993; Krohnand Bertelsen 1997).   

Viscosity issues were long ago addressed with this technique, allowing for complete 

perfusions of capillary beds (Lametschwandtner, Lametschwandtner et al. 1984; 

Lametschwandtner, Lametschwandtner et al. 1990; Simoens, De Schaepdrijver et al. 

1992).   
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The goal of this study was to demonstrate our ability to acquire 2D micro-CT image 

slices that could be reconstructed into models that clearly mimic capillary beds.   To 

accomplish this, this study compared the BMCC casting methodology (Figure 22) to the 

MicrofilTM contrasting agent methodology (Figure 20, 21, 23, 24 ) to determine which 

resulted in the most accurate, high-resolution imaging of capillary beds.   

Our challenge is to capture images of a vascular tree's luminal cast, which are capable 

of being reconstructed into a digital 3D image of the cast.   These images are needed to 

provide the data for producing a 3D bio-CAD model that reconstructs the corresponding 

vascular tree lumen.  An entire vascular tree luminal system, including its capillary bed, 

 

Figure 22: Vascular corrosion cast of a whole rabbit kidney.  In our search through 
the available literature and online resources, we found an emerging field in image 
construction on a microscopic level, which had previously been well developed on 

both macroscopic and geophysical scales. 
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can be imaged in 3D using micro-CT scans.  The micro-CT data captured is rendered into 

a 3D model using stereolithography.   

Reverse bioengineering calls for us to create a bio-CAD model of a sound vascular 

tree system.  Data must be representative of the entire vascular tree system, including the 

natural capillary bed’s structural design.  This way we can completely and precisely 

recreate the structural dimensions of the biologically engineered vascular tree system, 

making its functionality under its natural fluid flow condition ideally suited.  Resolution 

and scanning limitations of micro-CT prevented us from directly obtaining all of the 

image data to capture the complete vascular tree structure from one micro-CT scan image 

reconstruction.  

High-resolution micro-CT was used to completely resolve capillary bed systems.  

Specimens were prepared with both MicrofilTM microvascular (mv) method and modified 

Batson’s #17 method.  In the following section we explain the use of the modified 

Batson’s #17 method.   

 

Issues with Resolution and Accuracy 

Because of viscosity issues, contrasting agents may not be consistently present in the 

capillary lumens being imaged.  Less viscous contrasting agents did not produce enough 

contrast between the agent in the capillary lumen and the image of the surrounding 

tissues.  Intensity thresholding has not been able to clearly contrast lumen-filled 

capillaries from its surrounding tissues while at the same time demonstrating the larger 
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vasculature.  Small variations in the contrast levels of capillaries from background tissues 

are not clearly distinguishable when thresholding the image's intensity for larger vessels.  

This creates an imaging problem where the image’s noise-free threshold is being sought.  

Capillaries become indistinguishable from surrounding tissues without introducing large 

amounts of background noise.  After comparison, it was determined that Batson’s 

methylmethacrylate corrosion casting, a method traditionally used in the scanning 

electron microscopic analysis of luminal tissue structures, was an appropriate method to 

represent the capillary’s luminal structure during micro-CT scanning.  (Table 1) 

Corrosion casting defeats the issues viscosity gives us with complete perfusion.  

Viscosity issues have long ago been worked out with this technique and complete 

perfusions of capillary beds structures have been demonstrated with this technique.  The 

corrosion casting technique also addresses the limitations of contrasting capillary 

structures with the surrounding tissues when using the contrasting agents described in 

Table 1.  We compared our micro-CT of corrosion casting results with the micro-CT 

results we obtained using Microfil™ to fill blood vessel lumens.  Microfil™ was 

inefficient in contrasting a complete representation of capillary structures.  The micro-CT 

results using the Batson’s corrosion casting technique gave us clean images that could 

then be created and stored as mesh structure in a stereolithography file format, 

compatible with solid works and other software-guided fabrication.  Using CTan analysis 

and CTvol visualization software, stereolithographic images were created.  The resulting 

volumetric images were constructed from various tissue types (Table 2 ) using both 

micro-CT scanned corrosion casts of vascular networks  (Figure 29, and Chapter V) and 

micro-CT scanned contrast agent-filled vascular networks (Figures 24-26).   
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Tissue scanned with Microfil™ as a contrasting agent, even with small tissue samples 

(Figures 24-26), demonstrated incomplete and inaccurate capillary structures, even at 

high-resolution micro-CT scanning (Tables 2 and 3).  Region of interest (ROI) models 

constructed from high-resolution micro-CT of Microfil™-prepared samples demonstrate 

the incomplete filling of capillary system.  (See arrow points in Figure 24).  Micro-CT-

scanned Microfil™ specimen, post 3D reconstruction, can be adapted to show an 

improved microvascular structure (Figure 28) with image sweep variation of the 

despeckling image processing plug-in for Skyscan’s CT-Analyser version 1.8.1.3.  

The perfusion of mouse tissue with Batson’s #17 solution is shown in figure 27.  The 

blue pigment mixed in the Batson’s casting resin allowed us, using stereo light 

microscopy, to visually analyze the successful vascular perfusion of the casted tissue 

(figure 27).  This method also allowed us to be selective in our further processing of 

tissue for capillary bed imaging.  This strategy is not apparent in past investigations. 

The rabbit vascular casts were good for whole organ representations.  Figure 31 is a 

casting of a whole rabbit lung taken from the animal casting.  Figure 32 is a 3D view of a 

micro-CT image data set acquired from this casting using the Skyscan 1176.  In order to 

capture high-resolution images of capillary beds, a small portion was taken from whole 

lung vascular casting (Figure 31) for high-resolution with micro-CT (Figure 33).  Micro-

CT data captured from the lung vascular cast were used to construct the 3D model 

presented in Figure 33c.  Figures 30 shows - at increasing magnifications, a scanning 

electron microscopic (SEM) analysis of the vascular cast shown in 7a of figures 33 - 

rabbit lung.  In figure 30, the capillary network surrounding an alveolar air sac  
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Table 1: Performance of Vascular Contrast Agents 

 

Contrast 
Agents 

 

Iodine 
solutions 

(Priebe, 
Aukrust 
et al. 
1999; 
Badea, 
Hedlund 
et al. 
2006) 

Barium 
Sulfate 
(BaSO4) 

(Langheinri
ch, 
Leithauser 
et al. 2004) 

Nanogold 
particles 

(Hainfeld
, Slatkin 
et al. 
2006) 

Osmium 
tetroxide 

(Muller 
2006) 

 

Microfil 

(Beeuwke
s 1971; 
Marxen, 
Thornton 
et al. 
2004) 

Micropaque 

(Grabherr, 
Djonov et 
al. 2007) 

Informat
ion In vivo 

Quickly 
settle out of 
suspension. 

New 
Techniqu
e 

Not 
thorough
ly 
investiga
ted 

Radio 
opaque 
silicone 
rubber 

Gelatin 
thymolBaS
O4 

Limitati
ons 

Rapidly 
metaboli
zed 

Stimulates 
formation of 
globular 
vacuoles in 
endothelium 

Expensiv
e for 
large 
specimen
s 

Dangero
us 
carcinog
en 

Viscosity 
–will not 
consistent
ly fill 
capillary 
beds 

Viscosity 
will not fill 
capillary 
beds unless 
water 
replaces 
gelatin as a 
solvent 
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Table 2: Micro-CT  Image Acquisition  

Skyscan1172 

 

 

Sourc
e 

voltag
e (kV) 

Source 
current 
(uA) 

Image 
Pixel 
Size 
(µm) 

Object to 
Source 
(mm) 

Camera 
to Source 

(mm) 

Exposure 
(ms) 

Figure
s 

Rabbit 
Kidney 
Microfil 

59 167 5.99 110.47 214.243 1178 23 

Mouse 
Brain  

Microfil 
59 167 4.25 78.57 216.692 3534 26 

Batson’s 
Rabbit 
Skin 

100 100 17.45 258.20 347.049 885 35 

Batson’s 
Rabbit 
Lung 

100 100 5.06 93.68 217.089 1178 31 

Mouse 
Kidney 

301 
Microfil 

55 181 8.89 3534 3534 3534 21 

Mouse 
Kidney 

501 
Microfil 

55 181 8.89 3534 3534 3534 24 

Skyscan1076 

Batson’s 
Rabbit 
Lung 

Whole 

89 110 35.36 121 161 158 30 

Batson’s 
Rabbit 
Kidney 
Whole 

89 110 35.36 121 161 158 28 
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Table 3: Micro-CT  Image Reconstruction 

Skyscan1172 

 
Section 
count 

Result 
Image 
Width 
(Pixels) 

Result 
Image 
Height 
(Pixels) 

Pixel 
Size 
(µm) 

Figure 

Rabbit Kidney 
Microfil 1869 3684 2944 5.99 24, 25 

Mouse Brain 
Microfil 1869 3592 3592 4.25 26 

Batson’s Rabbit 
Skin 3301 3968 3968 17.45 35 

Batson’s Rabbit 
Lung 1961 2160 2160 5.06 32 

Mouse Kidney 
301 

Microfil 

1788 2096 2096 8.89 21 

Mouse Kidney 
501Microfil 1746 2388 2388 8.89 23 

Skyscan1076 

Batson’s Rabbit 
Lung Whole 1825 1000 1000 35.38 31 

Batson’s Rabbit 
Kidney Whole 1090 1000 1000 35.38 28 
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Figure 23: 3D Microfil projection.  A 3D projection of mouse kidney vasculature 
created with Microfil contrasting agent - Micro-CT image data.  Image pixel size 
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Figure 24: Microvasculature prepared with Microfil.  ROI taken from a high-
resolution Micro-CT reconstruction of mouse kidney microvasculature prepared 

with Microfil.  The arrows point to the lack of a continuous capillary system.  
Image pixel size 8.89 µm 

 

 

Figure 25: Mouse lung perfused with Batson’s methylmethacrylate. 
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Figure 26: Inability to resolve a complete and accurate capillary system.  Three 
images of the same region of interest at three different intensity thresholding were 
modeled from a micro CT scan of mouse kidney tissue contrast with Microfil in 

order to demonstrate the inability to resolve a complete and accurate capillary bed 
system using this method. 
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Figure 27: Lung from a mouse perfused with Batson’s methylmethacrylate. 

 

 

Figure 28: Microfil specimen from mouse brain.  After post 3D reconstruction 
image sweep (CTan) processing reconstruction shows improved microvascular 

structure.  Image pixel size 4.25 µm  
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becomes clearly visible.  In 8c of Figure 30 shows the complexity of these networks and 

their association with the neighboring alveolar air space.  These networks, along with 

their associations were not easily demonstrated with micro-CT.  The pre-screening of 

specimens with SEM allows us to narrow our search of the casts for areas representative 

of the capillary bed structure desired.   

The best reconstruction results for capillary structures by micro-CT were obtained 

with the modified Batson’s procedure described in this report.  Micro-CT of the rabbit 

skin’s vasculature showed a cast with Batson’s that completely filled most of the vascular 

tree system of the dermal and subdermal regions.  Figure 30 shows, using SEM, the fine 

capillary detail present in the dermal vascular corrosion cast from Figure 34.  Figure 36b 

demonstrates a 3D model created from the micro-CT images from a portion of this 

vascular corrosion cast.  The 3D model contains these capillary structures, as well as the 

structures of larger blood vessels (Figure 36).  This 3D model clearly represents the 

arteriole and venous blood supply system with continuous microvasculature and capillary 

beds structures demonstrated at the SEM level.   

The eroding away of all tissues is characteristic of the corrosion casting technique.  

The lack of tissues surrounding the imaged structure reduced the background noise 

during the intensity profiling.  The removal of tissues from the cast provided samples that 

contained no background material to absorb X-ray contrast levels, ultimately giving a 

more efficient image of the represented capillary structures.   

Micro-CT scanning of corrosion casts allowed a cleaner, more complete 

representation of the capillary vasculature.  Background noise associated with micro-CT  



93 

 

 

 

 

Figure 29: 3D mess model of a rabbit kidney vascular casting.  Model of the 
vascular casting seen in figure 22, created using Micro-CT.   

Image pixel size 35.36 µm.   
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Figure 30: Scanning electron microscopy (SEM) of a vascular cast.  
Step-wise scanning electron microscopy (SEM) zoom into an area of 

the vascular cast shown in Figure 33.  In 8b the capillary network 
around lung alveoli becomes clearly visible and 8c shows the 

complexity of these networks and their association with neighboring 
perialveolar networks.   
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Figure 31: A corrosion cast of a whole rabbit lung 

 

Figure 32: 3D view of a Micro-CT image data set acquired from lung casting.  
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Figure 33: Capturing the capillary bed.  In order to capture capillary beds a small portion 
was taken from a lung vascular cast for high-resolution Micro-CT.  7b: 3D model created 

from Micro-CT data captured from lung vascular cast shown in 32a.  Image pixel size 5.06 
µm, 7a:  Selective region of interest taken from rabbit lung data set demonstrating alveolar 

sacs and the limitations of detail obtainable when scanning specimens with large 3D 
volumes and complex microstructures.  The capillary structures in most areas are blended 

together to appear as a single structure. 
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images that occurs during the intensity thresholding of vessel’s lumen perfused with 

Microfil™, with tissues present, was significantly reduced when using Batson’s method.  

Resulting images were reconstructed in a STL file format as 3D mesh structures.  The 

results of our experiments, using the resulting STL’s for modeling complete capillary bed 

structures, indicated that scaffolding can be designed to directly mimic unique structural 

patterns of various vascular tree systems.   

The in vitro biomedical engineering of intact, functional vascular networks, which 

includes the capillary structures, is needed.  Capillary structures are necessary in order to 

make available elements and compounds for the growth, function, and maintenance of 

3Dtissue structures.  Using micro-CT, we studied the ability to use vascular tissues to 

produce data capable of aiding the design of vascular tree scaffolding that would help in 

the reverse engineering of a complete vascular tree system that includes capillary bed 

structures.  We used STL models of large, data-generated CAD data of vascular 

structures, which contained capillary structures that mimic those in the dermal layers of 

rabbit skin.  Using CAD software, we created from 3D STL models a bio-CAD design 

for the foundation of a capillary containing vascular tree scaffolding for various tissues.  

The resulting bio-CAD design can be used to guide the fabrication of the scaffolding by 

rapid prototyping techniques and 3D patterning using femtosecond laser pulses and will 

serve as the framework for tissue engineering of microvascular structures.  Resulting 

microvasculature will be capable of supplying a blood source to 3D tissue scaffolds, 

thereby stimulating and supporting tissue genesis and regeneration.   
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Resolution at Different Levels with Different Devices 

The area that can be imaged and reconstructed by Micro-CT is limited in size when 

high-resolution instrumentation is used.  This makes the area that is possible to scan 

smaller than most complete vascular tree systems.  Micro-CT results demonstrate the lack 

of resolving capabilities needed to clearly image the 7 to 10 µ diameter tubes that make 

up the capillary beds of vascular tree system.  The resolution limitations of micro 

computer-assisted tomography imaging systems make capturing complete image data for 

the capillary bed of a vascular tree very difficult – almost impossible – even with the 

latest equipment.  In the future, we will be able to have improved CT capabilities.  But 

for now, in order to reverse engineer a vasculature tree using micro-CT image data, 

image data for capillary networks that are missing because of resolution limitations must 

be supplied by other means.   

Image data from micro-CT and re-constituted serial tissue sections are converted to 

3D wire frame models and merged together using CAD software.  The reconstructed 

image data sets from micro-CT and serial section of the corresponding capillary bed are 

combined to complete the framework for the bio-CAD model.  This framework gives us a 

complete 3D layout of the inner wall of the vascular tree system of interest.  Using 

histological data on vascular wall thicknesses along the length of it structure, auto-CAD 

can be use to render, on top of the layout for the lumen wall, a design for a structural 

scaffold created for the seeding of migrating progenitor and/or stem cells.   

Designs can then be imported into 3D prototyping software for the creation of 

structures.  However, limitations are found in the creation of microstructures.  These 
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limitations are due to the molecular structure of the structural materials, as well as the 

prototyping technology – which is quickly improving – and the details of the design.  By 

using actual image data obtained directly from vascular tree systems, we create a highly 

detailed model of its structure.  Such models are extremely valuable in the 3D fabrication 

of scaffolds to be used for the tissue engineering of complete vascular tree systems.   

The 3D visualization of a vascular tree’s complete capillary bed is the most important 

step in our computer-aided design process.  The eroding away of all tissues, characteristic 

of corrosion casting, rids micro-CT images of the background noise problems seen during 

the intensity thresholding of micro-CT images with tissue still present.  The results are 

images that can then be created and stored as mesh structures in a stereolithography file 

format, compatible with software-guided fabrication.  Whereas investigators are now 

beginning to attempt to use our imaging strategy for the reverse engineering tissue 

scaffolds for large defects in soft tissues (Ballyns, Gleghorn et al. 2008), without the 

necessary vascular supply system native to tissue structure, attempts at engineering 

functional tissue structures from these types of scaffold are futile. 

Micro-CT was used to capture image data directly from Batson’s methylmethacrylate 

corrosion cast (BMCC) of the vascular tree system.  Previous micro-CT investigations 

which illustrate complete (Robb and Hanson 2006; Bentley, Jorgensen et al. 2007; Yu, 

Ritman et al. 2007; Cameron, Holmes et al. 2008) 3D reconstruction of capillary bed 

structures demonstrate that there are major obstacle against their complete visualization 

(Table 1).  Contrasting agents do not produce sufficient contrast between the agent in the 

capillary lumen and the surrounding tissues (Hainfeld, Slatkin et al. 2006; Mukundan, 
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Ghaghada et al. 2006; Cai, Kim et al. 2007; Kong, Lee et al. 2007; Habibi, Krishnam et 

al. 2008).  Viscous polymers and gels consistently fill capillary beds (Marxen, Thornton 

et al. 2004).  Low viscosity, iodine-based in vivo contrast agents are metabolized quickly, 

creating unstable images that fade rapidly from within the capillary lumina (Priebe, 

Aukrust et al. 1999; Kim, Kim et al. 2005; Ford, Graham et al. 2006).  Reconstructing 

images of the whole vascular tree system at once gives rise to further problems (Muller 

2006; Roberts, Neill et al. 2006).  When making comparisons between micro-CT scans of 

a mouse kidney’s vasculature contrasted with Microfil™ and a BMCC vascular cast of a 

rabbit kidney, we found that the ability to demonstrate the smaller vessels was restricted 

with Microfil™.  This is caused by incomplete vascular perfusion due to metal additive 

used for contrasting X-ray images inducing endocytosis and vacuole formation by 

vascular endothelium (Figure 1) (Langheinrich, Leithauser et al. 2004; Pollard and 

Pascoe 2008) which is used in Microfil™.  Also, it was not possible to find an intensity 

threshold, which eliminated background noise from the tissues surrounding blood vessels 

and demonstrate the complete microvascular and the larger blood vessels.  In eliminating 

background noise, much of the contrast agent’s image of the capillary’s lumen is lost.  

Imaging of Microfil™ samples necessarily implies the sacrifice of some of the 

microvascular details, even at high-resolution CT scanning levels (Ritman 2005; 

Zavaletta, Bartholmai et al. 2007).   

The use of heavy metals to increase the density of contrasting agents (Table 1) causes 

a toxic response by endothelial cells.  The endocytosis of heavy metal-based contrasting 

agent by the endothelial cell encompassing the blood vessel lumina (Figure 1) 

(Langheinrich, Leithauser et al. 2004) creates vacuoles, which causes cytoplasmic 
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swelling and can lead to significant narrowing of microvascular lumina.  The subsequent 

narrowing slows or blocks the contrast agent's profusion, resulting in the incomplete 

filling of the capillary beds (Beeuwkes 1980; Elleaume, Charvet et al. 2002; Bernard, 

Luchtel et al. 2005; Ananda, Marsden et al. 2006; Muller 2006; Kim, Park et al. 2007; 

Almajdub, Magnier et al. 2008) and its inaccurate micro-CT imaging.   

For complete visualization of capillary bed systems, both the capillary beds and larger 

vessels on the opposite side of the contrasting agent’s entrance into the capillary bed 

system need to be filled.  In order to overcome the obstacles with micro-CT contrast 

agents hampering complete visualization of capillary bed systems, we used BMCC 

corrosion casts (Figures 30, 35, 36.).  The corroding away of tissue surrounding the 

vascular cast also allows us to examine samples with SEM before micro-CT scanning.  

With this added step, it can be determined whether the perfusion of the casting material 

has entered the necessary regions of the capillary bed structures and whether the 

necessary image data can be obtained from the sample chosen.   

The use of the BMCC method, without adding barium sulfate or other heavy metal, 

prevents vacuole formation in endothelial cells of the microvascular walls, allowing 

capillary lumina to stay open during the perfusion with BMCC.  Lowering the 

polymerization rate during perfusion can increase the BMCC casting media’s ability to 

flow through the capillary beds.  Precise control of polymerization time will allow for 

complete filling of the blood stream with the BMCC casting media before its viscosity 

begins to increase to a level that limits its flow through the microvasculature.  If care is 
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not taken in these areas, polymerization can occur in the vascular system before perfusion 

of the contrasting agent has completely filled the blood vasculature.   

A specimen’s size and thickness is an issue addressed with the eroding away of 

tissues, characteristic of the BMCC corrosion casting technique.  With the removal of 

surrounding tissues, the x-ray tube can be set at lower acceleration voltages, allowing the 

smallest diameter of the capillaries’ luminal casts, 5µm – 7µm, the ability to block the x-

rays’ path to exposure, making their structures resolvable.  This precludes the need to add 

to the Batson’s polymer, x-ray opaque materials, which can interfere with the perfusion.   

The results here show that corrosion casting with BMCC method create 

representations of continuous vascular tree structures that are micro-CT detectable 

without the use of contrasting metals, such as barium, which have been shown to block 

microvascular and capillary lumina (Langheinrich, Leithauser et al. 2004; Kim, Park et 

al. 2007).  The eroding away of tissues, characteristic of the BMCC technique gives 

significant reduction in background noise (See Chapter V), so this technique provides 

clean structures from which 3D models can then be created as mesh structures in a 

stereolithography file format.  These files promise to be an excellent resource for further 

bio-CAD refinement of vascular tree-mimicking scaffolds.   

The in vitro biomedical engineering of intact, functional vascular networks that 

include the capillary structures is needed in order to fully realize the true potential of 

tissue engineering (Germain, Remy-Zolghadri et al. 2000; Sun, Starly et al. 2004; 

Kannan, Salacinski et al. 2005; Sun, Starly et al. 2005; Ballyns, Gleghorn et al. 2008; 

Hanjaya-Putra and Gerecht 2009).  Success has been limited to the stimulation of 
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relatively small networks of simply patterned capillary-like structures (Radisic, Park et al. 

2006; Iyer, Radisic et al. 2007; Linke, Schanz et al. 2007; Radisic, Marsano et al. 2008) 

and short, scaffold-supported vascular-like tubes that in vivo have stimulated limited 

vasculogenesis. (Telemeco, Ayres et al. 2005; van Amerongen, Harmsen et al. 2006)   

These attempts lacked the structural design millions of years of evolution has 

established in the creation of vascular structures (Hanjaya-Putra and Gerecht 2009).  

Capillary structures are necessary in order to make available elements and compounds for 

the growth, function, and maintenance of 3D tissue structures (Hanjaya-Putra and 

Gerecht 2009).  Many researchers have taken the mathematical model approach to 

compute the anastomosis and patterning found in the vascular branching systems present 

in tissue structures (Bezy-Wendling, Kretowski et al. 2001; Kretowski, Rolland et al. 

2003; Volkau, Zheng et al. 2005; Wischgoll, Meyer et al. 2007; Volkau, Ng et al. 2008).  

Other researchers have created models of physiological behaviors, such as angiogenesis, 

or structural measurements, such as diameter and the distance between anastomosises, to 

model the structural pattern of microvasculature (Hall, Ngan et al. 1997; Halpin, Evans et 

al. 2003; Szczerba and Szekely 2005).  The best results come from researchers combining 

these two approaches (Li, Regli et al. 2007; Wischgoll, Choy et al. 2008).  Even still, 

these attempts fall short of being able to reproduce, with structural specificity, a complete 

and accurate model of an afferent-efferent blood vascular system that includes capillary 

beds.  In our prior study, we described the use of micro-CT) to render stereolithography 

(STL) models that mimic the organ-specific design of the capillary bed lumina in 

vascular tissues (Mondy and N. De Clerck 2009, In Press).  In this paper, we describe the 

use of these STL vascular lumina models, rendered with micro-CT, to mimic with 
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computer-aided design (CAD) the organ-specific vascular tree lumina of the dermal 

layers in rabbit skin.  Using CAD software, we created, from 3D STL, vascular tree 

models that contain complete and accurate designs of capillary bed lumina for the 

foundational use in creating bio-CAD blueprints of a capillary-containing vascular tree 

scaffold for skin and other tissues.   

Specimen Preparations 

Specimens were prepared with vascular perfusion, using modified Batson’s #17 

Corrosion Casting methods (Batson 1955; Pollitt and Molyneux 1990; Mondy and N. De 

Clerck 2009, In Press).  Vascular corrosion casts, which included capillary beds, were 

scanned using high-resolution micro-CT to completely resolve capillary bed systems 

(Mondy and N. De Clerck 2009, In Press).   

The ethical approval for procedures carried out on animals used in this study was 

obtained from University of South Florida’s Institutional Animal Care and Use 

Committee, established in accordance with the U.S. National Instituted of Health’s 

Guidelines for humane care and the University of Ghent’s Faculty of Veterinary 

Medicine’s Ethical Committee for Animal Experiments in Ghent Belgium. 

The rabbit was a female, 1-year-old New Zealand white rabbit weighing 2.2 kg. It 

was euthanized by intravenous injection of 1 ml T61® (Embutramide 200 mg, 

Mebenzoniumiodide 50 mg, Tetracaine hydrochloride 5 mg, Dimethylformamide et aqua 

dest. q.s. ad 1 mL, Intervet, Mechelen, Belgium) into the marginal ear vein. The mouse 

was male, 8-week-old Swiss mouse, weighing 27 grams. It was killed by cervical 

dislocation.   



105 

 

Vascular Perfusion 

A ventral incision was made, exposing the animal’s thoracic cavity.  An appropriately 

gauged cannula was inserted into a large artery supplying blood to the tissue.  Using a 

three-way valve, heparinized normal saline solution was perfused through the tissues’ 

vasculature to prevent blood clotting.  Perfusion was done at a pressure of 100mm Hg ntil 

blood was cleared from the tissue to be vascularly casted.  If venous perfusion was 

necessary, veins would be perfused at a pressure of 20-40mm Hg to prevent rupture of 

the vessel’s wall. The valve was switched to perfuse a freshly prepared Batson’s #17 

solution (Batson 1955; Pollitt and Molyneux 1990), modified with the addition of methyl 

methacrylate, into the animal’s tissues (Polysciences catalog # 07349).  Batson’s resin 

was allowed to polymerize within the animal’s tissue.  Curing of the polymer took two to 

three hours and was done with the specimen in an ice bath.  This slowed polymerization 

and minimized distortion of the cast during this exothermic reaction.  Tissue was then 

immersed into a 25% potassium hydroxide solution and allowed to stand for 24 to 48 

hours, as necessary.  The solution corroded the tissues away from the polymerized plastic 

in the vascular tree lumina.   

Modified Batson’s Formula 

A freshly prepared Batson’s #17/methyl methacrylate working solution consisted of 

50ml of Base Monomer, 7.5ml of solution B Batson’s #17 catalyst, 10 drops Promoter 

solution C, 20ml of methyl methacrylate monomer (MMA BDH Chemicals) and 5mg of 

one of the color dyes for visualization.   
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Scanning Electron Microscopy Preparation 

The vascular cast needed very little additional processing for SEM.  Gold/palladium 

sputter coating was used to provide an electron interactive surface for surface structure 

visualization.  Imaging and photography of vascular castings were performed using the 

Hitachi S570. 

Micro-CT Scanning of Specimens  

The Skyscan 1172 high-resolution micro-CT and the 1076 IN-VIVO micro-CT 

scanners were both used to gather the necessary image data to reconstruct vascular tree 

structures for scaffold design.  The instruments were produced by Skyscan, Belgium.  

Skycan1076 is designed for the in vivo scanning of whole animals and has an image field 

of 68 mm.  The 1076 was used on rabbit lung and kidney for complete scans of their 

larger vasculatures.   

For microvasculature representations, the Skyscan 1172 was used for its ability to 

move both the sample stage and the x-ray camera.  This allows us magnification 

adjustments where we can optimize the spatial resolution and image quality.  Smaller 

specimens were prepared from both the Batson’s and the Microfil™ microvasculature 

preparations and scanned on the 1172.  The specimens used to obtain the images created 

in this paper are listed in tables 2 and 3, along with the operating and equipment 

specifications utilized.   

Data Merging and Model Creation 

We have approached the challenges micro-CT presents with regards to accurately 

resolving complete capillary structures by 3D scanning corrosion casts of vascular 
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structures with micro-CT (Mondy and N. De Clerck 2009, In Press).  Reconstruction in 

stereolithography (STL) format allows the compatibility of subsequent 3D models with 

most CAD software.   

Rhinoceros 4.0, 32 bit, 3DMax and Geomagic 64 bit CAD software programs were 

tested for their possibility of loading and modifying stereolithographic (STL) mesh 

models obtained from the CTan processing of micro-CT data sets. Our aims were the bio-

CAD modification of models, ease of software manipulation of models’ structures, and 

design applications with the ability to create capillary bed-containing vascular scaffolds.   

Our novel method for engineering tissue structures is built around the computer-aided 

designing of vascular scaffolding that mimics actual vascular tissue structures on a 

micrometer scale.  The realization of a need for more detailed designs is demonstrated in 

the recent use of lithography to pattern channels designed structurally to simulate 

extracellular matrix fibers’ role in guiding cellular and cytoskeleton structural alignment 

(Sarkar, Dadhania et al. 2005).   

The recent use of lithography to pattern channels (Sarkar, Lee et al. 2006; Figallo, 

Flaibani et al. 2007) designed structurally to simulate extracellular matrix fibers’ role in 

guiding cellular and cytoskeleton structural alignment in the formation of a vascular wall 

(Medvedev, Samsonov et al. 2006) represents the first attempt at microscopically 

designing the structure of vascular scaffolds to structurally mimic natural vasculature.  

Using algorithms of constraint construction optimization, computer-generated models 

have been created to supply analytical models of hollow organs, as well as finite element 

analysis of image-generated triangular mess models (Schreiner, Karch et al. 2006). 
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In order to accurately engineer a complete vascular tree system that includes capillary 

bed structures, we sought a method to reconstruct capillary bed systems using micro-CT.  

Reverse bioengineering approaches have been used to visualize vascular tree systems 

(Kassab, Rider et al. 1993; Wischgoll, Meyer et al. 2007; Yu, Ritman et al. 2007).  A 

complete afferent-efferent blood vascular system that includes a capillary bed has yet to 

be reverse engineered.   

Given that the vasculature is a living and dynamic structure, constructing a 

geometrically similar structure based on these micro-CT derived 3D images is just our 

first step in our goal of reverse engineering a vascular tree.  Using these 3D images to 

guide fabrication, scaffolding can be produced by rapid prototyping and 3D femtosecond 

laser pulses patterning.  With the attachment of bioactive peptide motifs, like RGD, 

guided cell behaviors can be induced in these vascular tree scaffolds (Salinas and Anseth 

2008; Weber and Anseth 2008).  The resulting structure becomes dynamic and serves as 

a framework for tissue-engineered vasculature.  This vasculature will be capable of 

supplying a blood source to 3D tissue scaffolds, stimulating tissue regeneration.   

The resolution of a CT scanner is not the same as the voxel size of the scan.  It is 

quite likely that the resolution of the scanner is preventing us from resolving capillaries in 

some cases.  Vessels that have diameters smaller than the point spread function will be 

reduced in intensity and difficult to detect.  The extent to which the contrast agent filled 

the capillaries can be verified on histological sections in order to rule this out as an 

explanation.   
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Using a single scaffold or by combining scaffolds produced for different cellular 

tissue structures, we have the framework to reverse engineer any of the tissue structures 

produced in nature.  Using this type of reverse bioengineering approach, we can create 

designs that merge macroscopic with microscopic data.  They can mimic the extracellular 

environments (Shoichet, Yu et al. 2007; Rydholm, Held et al. 2008; Salinas and Anseth 

2008) conducive to the functional framework specific to vessel’s structural location and 

the tissue structure (Yu, Kazazian et al. 2007; Polizzotti, Fairbanks et al. 2008; Rydholm, 

Held et al. 2008) hosting the vasculature.   

Data Size Issues  

The 2D data sets created from micro-CT scans were very large and are listed in tables 

1 and 2.  The file sizes of the resulting 3D STL models constructed with CTan were 

dependent on the 2D image resolution and the intensity threshold (Table 5).  Initially, the 

system requirements for building 3D STL models from these data sets crashed our 

computer system or required anywhere from a few hours to several days to process.  The 

computer’s RAM was increased from 1 GB to 3 GB and finally to 8 GB, and the central 

processing unit upgraded from single to dual core.  Increasing the RAM memory and 

using a dual core processor gave us the results reported here.  Initially, the image data 

sets had to be divided into smaller sets and limited volumes of interest (VOI) selected in 

order to construct models at the full resolution of the micro–CT scans.  After the 

computer upgrades were made, complete data sets could be constructed into 3D STL files 

(Tables 4and 5).  But models of complete data set were too difficult to be constructed 

because of their sizes (Table 5).   
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Only 3D STL files less than 300 MB could be opened in Rhinoceros.  This made it 

useless for the 3D modeling of most image data sets.  The smallest subsets taken from 

data sets and modeled in 3D were from corrosion cast of rabbit skin.  This data set was 

selected because the vascular structure of the skin was less dense than the other tissue 

samples scanned (Mondy and N. De Clerck 2009, In Press).  The black background was 

more than 80% of the image and was eliminated with image compression, allowing us to 

produce small files sizes without losing the high resolution obtained at the micro-CT 

scanning level.  (See Table 5) 

In testing for the most efficient manual settings for the intensity thresholding, levels 

providing models with most capillary bed from corrosion cast micro-CT data, we 

compared our results with models created with algorithmic computations (Table 5).  

Small regions of interest were processed from rabbit skin’s data set in order to decrease 

the model size, significantly speeding speed up processing (Figures 44 - 53 and Tables 

4&5).  This was not worked out with an efficient intensity threshold, which demonstrated 

complete capillary structures (Figures 37 - 39 and Tables 4 and 5).  The choice was made 

to increase RAM and work on models that created larger files.   
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Table 4: Models Construction from 2D Micro-CT Images 

3D Stereo Lithography Models Construction from 2D Micro-CT Images 
Using CTan Software 

Data set: 2D Images, 
#/Size 

3D Model Size 
Mb DPI Pixel 

Rabbit Whole Lung  
Low Res 

1828/2.9 GB 
Bitmap 7,880 1308 13082 

Rabbit Lung small volume 
Hi-Res 1961/109MB 1,997 5019 21602 

Rabbit Kidney 1097/1.02GB 
Bitmap 24,000 1308 10002 

Rabbit Kidney Hi-Res 1870/3.77GB 77,316 4241 3684X29
44 

Complete Rabbit Skin scan 3308/1.05GB 5.37 GB 1455 39682 

Mouse Brain 1869/7.6 GB 10,500 5974 31442 
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Table 5: Stereo Lithography Models 

3D Stereo Lithography Models Construction of Corrosion Cast of Rabbit Skin Vasculature 
Micro-CT Software 

Data set: 2D 
Images/Size 

CTan STL Brightness 
Lower 
Index 

Brightness 
upper Index 

CTvol: Size 
Facets 

/Vertexes(
Million) 

3D 
Image 

Quality 

Bottom ½ 
OF TOP 1/3  
C1 

541/101 MB 5,500 MB Maximum Threshold 111,810/335,4
30 

Never 
Loaded 

Bottom ½ 
OF TOP 1/3  
C1 

541/101 MB 300 MB Global Threshold 25,789/77,366 Noisy 
Surface 

Bottom ½ 
OF TOP 1/3  
C1 

541/101 MB 810 MB Just under Max. Threshold 10,179/30,537 Good 
Image 

Bottom ½ 
OF TOP 1/3   
C2 

541/101 MB 32 MB 60% 62% Incomplete 
Model 

Incomplete 
Model 

Bottom ½ 
OF TOP 1/3  
C3A 

541/101 MB 689 MB 7.8% 62% 14.11 / Good 
Image 

Top ½ OF 
TOP 1/3   
C3A 

449/103 MB 690 MB 7.8% 62% 14.13/42.39 Good 
Image 

Top ½ OF 
TOP 1/3   
C3B 

449/103 MB 657 MB 7.8% 182 13.49/40.46 Good 
Image 

Top ½ OF 
TOP 1/3   
C3C 

449/103 MB 564 MB 7.8% 94.5% 11.56/34.67 Good 
Image 

Top ½ OF 
TOP 1/3  
C3D 

449/103 MB 2.47 GB 7.8% 100% 50.67/152.01 Good 
Image 

Top ½ OF 
TOP 1/3   
C3E 

449/103 MB 1.01 GB 7.8% 97.4% 20.65/61.94 Good 
Image 

Top ½ OF 
TOP 1/3   
C3F 

449/103 MB 1.39 GB 6% 93% 28.56/85.67 Good 
Image 

Top ½ OF 
TOP 1/3  
C3G 

449/103 MB 838 MB 3.9% 93% 17.16/51.47 Good 
Image 

Bottom 1/3 1401/322 MB 2.48 GB 7.8% 93%  Good 
Image 

Middle 1/3 1001/230 MB 1.09 GB 7.8% 93%  Good 
Image 

Top 1/3 901/205 MB 1.05 GB 7.8% 93%  Good 
Image 

Complete 
data set 

3308/1.05 GB 5.37 GB 7.8% 93%  No Model 
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Figure 34: 3D Bio-CAD model's file size comparisons 
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 Using the original hardware setup, the top third of the vascular cast data set created 

from micro-CT scans of the rabbit skin’s corrosion cast had to be constructed in halves.  

With the addition of 2 GB of extra RAM, each third could be constructed separately 

(Table 5).  The final hardware setup with 8 GB Dual Core intel 2.14Ghz processor and 

the ATI FireGL 5100 Graphic Processing Unit (GPU) allowed the whole data set to be 

used in the construction of a model, although the model could not be opened without 

significantly reducing the intensity threshold (Table 5 and Figures 36 and 37). 

With the upgraded hardware and the results seen on small models made from small 

regions of interest (ROI) in limited numbers of micro-CT 2D images (Figures 43 - 52), 

we decided to stitch the entire model together in small blocks (Tables 5, 6) and Figures 

53 -60.  In order to make the initial models more manageable for software and hardware, 

they were reduced in size through the reduction of the intensity threshold used to make 

the initial STL 3D models.  The results were models that were incomplete when opened 

in CAD program (Figure 36 -39).  The CAD software was used to remove floating 

unusable area (Figure 38), repair holes and bridge gaps in the design (Figure 39).   

The entire data set was created from the rabbit skin’s micro-CT scanning and was 

divided into 33 blocks; each block had approximately 101 2D slice images.  Each block 

was post-processed using CAD for the optimization of its structure and for stitching it to 

its neighboring blocks.  The results were hollow designs stitched together in thirds 

capable of containing fluid.  The thirds were then stitched together to form the whole 

scanned vascular structure (Figure 58&59).  Although there were some broken or 
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incomplete areas, continuous capillary structures were clearly modeled using the CAD 

software (Figures 47-60)  

In our long-range goal to reverse engineer a vascular tree, we must first design our 

structure.  In our first study on this subject, (Mondy and N. De Clerck 2009, In Press) we 

used the direct 3D visualization of the structural patterns comprising the lumen of 

complete vascular tree systems for the skin, lung, brain and kidney tissues.  In our second 

paper on the reverse engineering journey, we replicate one of these structural patterns in a 

bio-CAD design.  The first stage in meeting our goal is to engineer a bio-CAD design to 

direct the micro-fabrication of vascular scaffolds.  The model will simulate the 

extracellular matrix environment and stimulate needed cell type-specific behaviors.  In 

doing this, the cells will themselves become engineers and our design will be the 

“blueprint” guiding them in the development of vasculature wall structures with 

characteristics specific to the cell phenotype and position as it relates to vessel diameter 

and the wall location.   

The Skyscan 1172 high-resolution micro-CT and the 1076 INVIVO Micro-CT 

scanners were both used to gather the necessary image data to reconstruct vascular tree 

structures for scaffold design (Mondy and N. De Clerck 2009, In Press).  Skycan1076 

with an image field of 68 mm was used for its ability to handle large specimens.  The 

1172, with its smaller specimen stage and higher resolving capabilities, was used for 

resolving the microvasculature castings (Mondy and N. De Clerck 2009, In Press).  The 

Skyscan 1172 has the ability to move both the sample stage and the x-ray camera.  This 

allows us magnification adjustments where we can optimize the spatial resolution and 
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image quality.  The 3D reconstruction of 2D micro-CT data sets into 3D Models with 

stereolithography (STL) file formatting was done using Skyscan’s Computer 

Tomography Analyser (CTan).  The resulting models were visualized in 3D using 

Skyscan’s Computer Tomography visualization (CTvol) software. 

Post-slice set reconstruction of the micro-CT scans data sets were used to construct 

3D models of the imaged vascular structures using a HP xw4300 workstation with 

Windows XP Professional.  An Intel Pentium 4 640 Supporting Hyper thread technology 

3.0 GHz/2 800 FSB was used with 3GB Duo channel DDR2 640 memory and an ATI 

FireGL 5100 Graphic Processing Unit (GPU) 

A custom machine was modified to aid in the graphic designing of vascular tree 

scaffold.  Its specifications were: a MSI Motherboard with Intel P965 Express Chipset 

and an Intel Core 2 Pentium 4 CPU; 6400 @ 2.13 GHz; Microsoft Vista, for 64 bit 

operating system With 8 Gigabytes of Duo channel DDR2 800 and an ATI FireGL 5100 

Graphic Processing Unit (GPU) 
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Chapter Five 

Case Studies and Applications 

Computer aided designs (CAD) of the lumina of micro vascular tree system’s can be 

modeled from micro CT scans including complete and accurate capillary bed structures.  

This study focuses on using CAD to model large vascular tree system that include 

complete and accurately render capillary luminal.  Micro CT scan results are divided into 

smaller subsets capable of being rendered into files manageable by CAD software and 

desktop computer hardware.  Using Intensity threshold, image contrast is adjusted for 

Batson's corrosion cast’s without surrounding tissues, to demonstrate complete capillary 

structures.  One subset at a time the complete vascular tree system is rendered into 3 

dimensional (3D) stereo lithography (STL) models.  The marginal areas of bordering 

subsets are duplicated for stitching together adjoining subsets.  Each STL is then modeled 

in CAD software, meshing errors repaired and significantly reduced in file size by 

triangle decimation.  During this processing the marginal areas of each subset, later be 

rejoined, are unaltered.  Processed sections of the vascular tree system are stitched 

together forming the complete vascular tree structure of the dermal skin anatomy(Zhang, 

Laufer et al. 2009).   

In vitro biomedical engineering of intact, functional vascular networks, which include 

the capillary structures, is a prerequisite for adequate vascular scaffold production. 

Capillary structures are necessary since they provide the elements and compounds for the 
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growth, function, and maintenance of 3D tissue structures. Computer-aided modelling of 

stereolithographic (STL) micro-computer tomography (micro-CT) 3D models is a 

technique that enables to mimic the design of vascular tree systems containing capillary 

beds, found in tissues.  In our first paper (Mondy and N. De Clerck 2009, In Press), using 

micro-CT, we studied the possibility to use vascular tissues to produce data capable of 

aiding the design of vascular tree scaffolding, which would help in the reverse 

engineering of a complete vascular tree system including capillary bed structures.  In this 

paper we used STL models of large datasets of Computer-Aided Design (CAD) data of 

vascular structures which contained capillary structures that mimic those in the dermal 

layers of rabbit skin.  Using CAD software we created from 3D STL models a bio-CAD 

design for the development of capillary-containing vascular tree scaffolding for skin. This 

method is designed to enhance a variety of therapeutic protocols including, but not 

limited to, organ and tissue repair, systemic disease mediation and cell/tissue 

transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the 

bioengineering of various other types of 3D tissue structures, and as such greatly expands 

the potential applications of biomedical engineering technology into the fields of 

biomedical research and medicine.   

Using CAD software, we created from 3D STL vascular tree models containing 

complete and accurate designs of capillary bed lumina for the foundational use in 

creating bio-CAD blueprints of capillary-containing vascular tree scaffolding for skin and 

other tissues.  The results from this study clearly indicated that accurate and complete 

high-resolution models of vascular trees can be produced in bio-CAD and that direct 

modeling methods can be used to construct a complete and accurate high-resolution CAD 
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of capillary lumina (Mondy and N. De Clerck 2009, In Press).  These modeling results 

are a basis for the further designing of a “bio blueprint” to guide, using micro-prototyping 

techniques such as the 3D chemical patterning of photo-cross linkable multilayered 

hydrogels (Yu, Kazazian et al. 2007; Elisseeff 2008), the more complete structural 

fabrication of a vascular scaffolding, scaffolding that will support, nurture and guide the 

celluarization of microvascular and macrovascular structures and serve as a nurturing 

framework.  This framework supports the further engineering and design of organ-

specific, functional tissue structures from chemically and mechanically engineered extra 

cellular matrixes, using micro-rapid prototyping and 3D laser pulse patterning for the 

regulation of tissue-specific cellular morphologies (Elisseeff, Ferran et al. 2006; Linke, 

Schanz et al. 2007; Garagorri, Fermanian et al. 2008).    

Creating the Bio-CAD Model 

In our long range goal to reverse engineer a vascular tree we must first design our 

structure.  In our first study on this subject (Mondy and N. De Clerck 2009, In Press) we 

used the direct 3D visualization of the structural patterns comprising the lumen of 

complete vascular tree systems for the skin, lung, brain and kidney tissues.  In this second 

paper on our reverse engineering journey we replicate one of these structural patterns, the 

microvasculature of the skin, in a bio-CAD design (Tables 6 & 7).  The first stage in 

meeting our goal is to engineer a bio-CAD design to direct the micro fabrication of 

vascular scaffolds.  The model will simulate the extracellular matrix environment and 

stimulate needed cell type specific behaviors.  In doing this the cells will themselves 

become engineers and our design as the ‘blueprint’ guiding them in the development of 
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vasculature wall structures with characteristics specific to the cell phenotype and position 

as it relates to vessel diameter and the wall location.   

3D Model Acquisition/Stereolithography File Format 

The Skyscan 1172 high-resolution micro-CT and the 1076 INVIVO Micro-CT 

scanners were both used to gather the necessary image data to reconstruct vascular tree 

structures for scaffold design (Mondy and N. De Clerck 2009, In Press).  Skycan1076 

with an image field of 68 mm was used for its ability to handle large specimens.  The 

1172, with its smaller specimen stage and higher resolving capabilities was used for 

resolving the microvasculature castings (Mondy and N. De Clerck 2009, In Press).  The 

Skyscan 1172 has the ability to move both the sample stage and the x-ray camera.  This 

allows us magnification adjustments where we can optimize the spatial resolution and 

image quality.  The 3D reconstruction of two dimensional (2D) micro-CT data sets into 

3D Models with Stereo Lithography (STL) file formatting was done using Skyscan’s 

Computer Tomography Analyser (CTan).  The resulting models were visualized in 3D 

using Skyscan’s Computer Tomography visualization (CTvol) software.   

The 2D data sets created from micro-CT scans were very large and are listed in 

Tables 6 and 7.  The file sizes of the resulting 3D STL models constructed with CT were 

dependent on the 2D image resolution and the intensity threshold (see Table 7). Initially, 

the system requirements for building 3D STL models from these data sets crashed our 

computer system or required from a few hours to days to process.  The computer’s RAM 

was increased from 1 GB to 3 GB and finally to 8 GB, and the central processing unit 

upgraded from single to dual core.  Increasing the RAM memory and using a dual core 
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processor yielded the results reported here. Initially, the image data sets had to be divided 

into smaller sets and limited volumes of interest (VOI) selected in order to construct 

models at the full resolution of the micro–CT scans.  After the computer upgrades, the 

above complete data sets could be constructed into 3D STL files (see Tables 6&7).  

However, models of complete data sets were too difficult to be constructed because of 

their sizes (see Table 7)  

Only 3D STL files less than 300 MB could be opened in Rhinoceros, which was 

useless for the 3D modeling of most image data sets. The smallest subsets taken from 

data sets and models in 3D were from corrosion casts of rabbit skins.  This data set was 

selected because the vascular structure of the skin was less dense than those of the other 

tissue samples scanned (Mondy and N. De Clerck 2009, In Press).  The black background 

accounted for more than 80% of the image and was eliminated with image compression, 

allowing us to produce small-sized files without losing the high resolution obtained at the 

micro-CT scanning level.   

Initial Processing 

In our search for the most efficient manual settings for the intensity threshold levels 

providing models with the largest capillary bed portion from corrosion cast micro-CT 

data, we compared our results with models created with algorithmic computations (see 

Table 8).  Small regions of interest were processed from data sets of rabbit skin in order 

to decrease the model size, which resulted in significantly lower processing times (see 

Figures 43 - 53 and Tables 5&7).  This approach did yield an efficient intensity threshold 
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which allowing complete capillary structures (Figures43-53and Tables 4& 5).  Therefore, 

we opted to increase RAM instead and work with models of larger file size.   

Using the original hardware setup, the top third of the vascular cast data sets created 

from micro-CT scans of corrosion casts of rabbit skin, had to be constructed in halves. 

Addition of 2 GB of extra RAM allowed us to construct each third separately (see Table 

8).  The final hardware setup with an 8 GB Dual Core Intel 2.14Ghz processor and the 

ATI Fire GL 5100 Graphic Processing Unit (GPU) allowed us to use the whole data set to 

construct a model although the model could not be opened without significantly reducing 

the intensity threshold (Table 5).  Figures 38 and 39 show magnification of selected 

areas, showing (Circled area in 38) incomplete structures where surface structures were 

loss while image intensity was adjusted to decrease STL file size.  Figure 37 shows a 

STL model of complete rabbit skin vascular cast imported from micro-CT software into 

CAD software.   

Intensity thresholding was set at a level that maximized the amount of data present 

while obtaining an image whose size could be open and then manipulate for 

modifications.  A lot of vascular structure is not continuous due to lowering intensity 

levels to reduce the model’s file size; even so this model was too large to be efficiently 

modified using our final hardware setup.  Figure 37 is a STL model of same micro-CT 

data set processed at a lower intensity level to produce a CAD model whose structure 

could be fully modified in the CAD software program.  Note the significant amount of 

microvascular structure seen in 36 missing from 37.  Figure 39 shows steps to repair large 

hole created in model by lowering threshold of complete data set.   
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In constructing models from the 2D data sets we found that the automatic intensity 

threshold setting did not give us an optimal STL model for data representation.  We 

experimented with intensity settings on one data sets from corrosion cast made from the 

lung, kidney and skin in order to establish a range of settings that would give us a 

complete model without introducing unnecessary information.  By setting an intensity 

higher than necessary, even though background noise may not have been introduced, the 

size of the STL file was significantly increased.  Because we were at the limits of our 

computer system's hardware and software limitations we had to cut its costs in 

constructing 3D models from these data sets.  Once we found an acceptable range we 

chose the data set for rabbit skin vascular cast to fine tune the range for the intensity 

threshold settings that would give us the 3D STL modeling results we need.   

  

 

Figure 35: 3D models created from Micro-CT images of skin vascular casting.  Selective 
region of selected from rabbit skin data set demonstrating continuous capillary structure.  
The detailed topological data obtainable when scanning such a large specimen in not only 
due to the Batson’s method, but also the shallow nature of skins vascular tree structure in 

the z plane. 
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Figure 36: Bio-CAD model constructed using a complete Micro CT data.  Data set 
consisting of over 3300 2-D images and capillary bed structures are incomplete 
because the image’s intensity level was limited in order to produce a 3D model 

with a file size capable of being constructed.   

 

Figure 37: Reduced intensity threshold.  A model from the same data set as 36 
whose intensity threshold was reduced even further to remove most of the image 

data suspended with no connection. 
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Figure 39: Laborious repair method. A demonstration of the laborious repair method 
needed for the larger holes that appear in models whose intensity was reduced in 

order to produce a model with a manageable file size.  The area within the rectangle 
found on the first figure above demonstrates the location of the hole being repaired in 

the larger model.  

Figure 38: Suspended image data.  This reconstruction 
demonstrates the vascular tree model from Figure 36 where 

all suspended image data has been selected and deleted.  The 
area within the rectangle above is represented in the first 

image below. 
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CAD Modeling 

Initial models were reduced in size by reducing the intensity threshold in order to 

make them manageable by software and hardware.  This approach resulted in incomplete 

models when opened in the CAD program (Figure 37).  CAD software was used to 

remove the superfluous floating area (Figure 38), repair holes and bridge gaps in the 

design (Figure 39).   

Using the upgraded hardware and starting from the results with small models 

obtained from small regions of interest (ROI) in limited numbers of micro-CT 2D images 

(Figures 42, 43, &46-50) we decided to stitch the entire model together from small blocks 

of images (Tables 6&7 and Figures 55-57).   

The entire data set created from the rabbit skin’s micro-CT scanning was divided into 

33 blocks; each block had approximately 101 2D slice images (see Appendix Table 1) 

and was post-processed using CAD for optimization of its structure and stitching to its 

neighbouring blocks.  The results were hollow and structural designs that were stitched 

together in thirds (Table 7&8) capable of containing fluid.  The thirds were then stitched 

together to form the whole scanned vascular structure (Figure 56).  Although there were 

some broken or incomplete areas, continuous capillary structures were clearly modelled 

using the CAD software (Figures 51-52)  

Figures 42 is a 2D image section of the model in Figures 45 and 46.  This section 

shows a region of interest from the rabbit skin’s vascular cast modeled in CTan software, 

before modeling in 3Dvol software (Figures 45 & 46),  figures 47 and 48 show the same 

model imported into the CAD software, Geomagic, as STL created in micro-CT software.  
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The trimming away of the empty areas around vasculature shown here in Figure 42is the 

first steps in the creation of the blue model in Figures 51.  Figure 49 is the CAD model 

from Figure 47 and 48 after removing floating pieces and smoothing its surface.  Figure 

50 is a high magnification taken from one portion of Figure 49.  Figures 54 and 55 

illustrates eight and eleven blocks of STL models respectively, stitched together and 

processed during the design and assembly of one third of the complete micro-CT scans 

acquired from the vascular tree lumen casting.  The insert on the top right-hand corner of 

Figure 51 shows a magnification of the inside of an anastomosis at a processed opening 

of one of the modeled 2D image blocks.  (Table 5&8) 

Figure 54 illustrates a comparison of CAD models.  The top created by stitching 

together separately processed CAD models and the bottom created by engaging one third 

of the data set at an intensity level that brought into view as much as possible of the 

capillary bed structures with as little noise as possible.  The segmented model was 

stitched from eleven models, each model segment constructed from a STL consisting of 

101 2D micro-CT images.  The bottom image is of a CAD model created from one single 

STL constructed from 800 of the same 2D micro-CT images used in the top design.  

Insert shows the complete micro-CT scan stitched together in three sections of eleven 

models as each prepared as the one shown at the top of this figure.  Figures 57 and 58 

show the entire data set modeled results of stitching together 33 separately built STL 

models.  The 75% decimation of the complete segmented model illustrated in Figure 59, 

maintains its capillary consistency while reducing its file size two thirds.   
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Figure 41: Scanning electron micrograph of skin casting.  This 
micrograph shows a portion of vascular casting in figure 41.  It captures 

the capillary bed’s anastomosis with neighboring blood vessels.   

 

Figure 40: Rabbit skin casting.  Vascular tree casting taken from the 
dermal and sub-dermal regions of dorsal rabbit skin.   
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Figure 42: A single 2-D image slice from the micro-CT data set.  
Acquired from the rabbit skin vascular cast used to build the 3-D models 

demonstrated in this manuscript, It demonstrates the size of the ROI 
modeled in Figure 46 - 48.  

 

Figure 43: Cutting it down.  One of the 2-D image slices used to 
create the region of interest model demonstrated in Figures 46 
through 49.  This image can be seen highlighted in the square 
on Figure 43.  This gives a perspective on the size in reference 

to the size of the original area captured by the micro-CT the 
scanner  
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Figure 45: From STL to CAD.  A cylindrical region of interest model 
acquired from micro-CT image data rendered in Geomagic CAD software.  
The boundary region, demonstrated in the lower left-hand corner, can be 
selectively removed, allowing visual access to the selectively modeled 

   

 

 

Figure 44: A 3D cylindrical region of interest STL model.  Constructed using 
CTvol software this same model is demonstrated, after importing into Geomagic 

CAD software, in Figure 45. 
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Figure 46: CAD model of Figure 47. Constructed from a very small region of 
interest the small ROI allows optimization of intensity thresholding resulting in a 

STL with a manageable file size allowing for further image processing. The 
model’s dimensions are marked with values listed in the lower left corner.  

 

Figure 47: STL model of region of interest demonstrated in Figure 43.   
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Figure 49: Smoothing the surface.  We show here the CAD model from Figure 47 
after removing floating pieces and smoothing its surface.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Demonstrating model’s surface at high magnification.  Here we see 
an unprocessed model of a luminal cast of continuous capillary structures.  

Diameters of one capillary lumen measured and labeled in microns. 
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Figure 50: High magnification taken from one portion of Figure 49. 

 

Figure 51: Combining models.  This is a combination of two CAD models 
created from two separate STL models; one red and one blue. The blue model 
is show in Figure 44.  These small ROIs were taken from micro-CT scan of 
vascular cast made of the vascular lumen of rabbit skin.  Insert shows where 

they are found on part of the complete micro-CT scan demonstrated in Figure 
37.   



134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: The first 101 images.  The complete CT scan of the rabbit skins 
vascular cast were used to create an STL model for use in the construction of the 

CAD design shown here.  CAD underwent processing that allowed for the 
complete scan of the vascular system cast to be ‘stitched’ together. 

 

 

Figure 53: Two blocks of 101.  2D micro-CT slices built into two separate STLs 
and imported into CAD software where they were processed and stitched 

together.  Insert shows a magnification of an area of the models in blue, modified 
for joining the two STL models together.   
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Figure 55: Eleven independently constructed 3D models.  One third of the 
complete micro-CT scanned data is shown here consisting of 11 independently 

constructed models join to neighboring models after undergoing image processing. 

 

Figure 54: Eight independently constructed 3D models.  Stitched together to form a 
single model, the blue areas indicate the zones were models overlapped in the 

adjoining process. 
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Figure 56: One piece at a time.  Here we see illustrated a comparison between the top 
third of the complete scan created through stitching together 11 separately (red model) 
prepared STL models, with the model created from a single data set containing the top 

third of the 2D images. 
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Figure 57: The whole thing.  33 separately built STL models stitched together to 
form a model of the complete image data set acquired through the micro-CT 

scanning of the rabbit skin’s vascular cast.   

 

Figure 58: From a different perspective.  The model of the complete data set is 
shown stitched together from three sets of 11 independently constructed STL 

models assembled in stages along the z axis. 



138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Rabbit Skin Vascular – 3D Bio- CAD Model Construction Blocks 

R a b b i t  S k i n  V a s c u l a t u r e  – 
3D Bio-CAD Model Construction 

Blocks/Data Set Division 
(Constant gray scale indexing 5.1%-

100%) 
Block of 101 images  Block Size MB Original STL Size  Mb Wrap file size Mb 
1 22.9 106 81 
2 22.9 106 81 
3 22.7 102 77 
4 22.8 116 88 
5 22.9 134 102 
6 22.7 112 85 
7 22.8 113 86 
8 22.7 116 88 
9 22.8 130 98 
10 22.9 143 108 
11 23.1 159 121 
12 23.2 177 134 
13 23.3 186 140 
14 23.2 185 139 
15 23.3 194 146 
16 23.4 207 156 
17 23.3 195* 147 
18 23.5 229 173 
19 23.4 215 162 
20 23.4 220 167 
21 23.6 254 223 
22 23.6 247 187 
23 23.8 283 213 
24 23.8 285 214 
25 23.6 255* 192 
26 23.5 237 179 
27 23.2 184 139 
28 23.9 142 107 
29 22.8 137 103 
30 22.7 121 91 
31 22.6 137 104 
32 22.7 149 113 
33 22.3 156 119 
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Table 7: 3D CAD Models of Rabbit Skin Vascular Cast 

3D CAD Models of Rabbit Skin Vascular Cast Stitched 
from Smaller 3D CAD Models Blocks  (WRP-some 

processing) 

Region of vascular 
cast  

Number 
of 
Blocks) 

File Size  
GB 

Number of 
Triangles 

Bottom Third 
Stitched  11 1.6 42,649,000 

Middle Third 
Stitched  11 1.8 47,982,000 

Top Third Stitched  11 1.0 27,263,000 

Thirds Stitched 
Whole  33  4.4  117,894,000  
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Table 8: A Comparison of a Single Model's File Size 

Rabbit Skin 2D image properties 

Jpeg compression of 3968 x 3968kb image file size to 231 Kb 

(Black background given value of zero) 

File Format Conversions Size 

Original CTan STL 810,416 Bites 

IGS 7,808,265 Bites 

Wrap  wrp 363,295 Bites 

Auto CAD  dxf 3,290,924 Bites 

GeomView oogl 651,924 Bites 

Whorl  VRML2 wrl 775,195 Bites 

ASCII  STL 497,022 Bites 
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Figure 59: A decimated view.  A closer view of the models demonstrated 
above after being decimated by 75% of the model's triangles. 
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Chapter Six 

Conclusion/Future Work 

Our successful approach to designing vascular scaffolds uses an interdisciplinary 

approach to enhancing a variety of therapeutic protocols including but not limited to: 

organ and tissue repair, systemic disease mediation and cell/tissue transplantation 

therapy. The results of these methods takes us closer to the bioengineering of various 

types of three-dimensional tissue structures, greatly expanding the potential application 

of biomedical engineering technology into the areas of biomedical research and medicine.   

Using a single scaffold or by combining scaffolds produced for different cellular 

tissue structures, we have the framework to reverse engineer any of the tissue structures 

produced in nature.  Using this type of reverse bioengineering approach, we can create 

designs that merge macroscopic with microscopic data to mimic the extracellular 

environments (Shoichet, Yu et al. 2007; Rydholm, Held et al. 2008; Salinas and Anseth 

2008) conducive to the functional framework specific to vessel’s structural location - and 

the tissue structure (Yu, Kazazian et al. 2007; Polizzotti, Fairbanks et al. 2008; Rydholm, 

Held et al. 2008) hosting the vasculature.   

Future design approach should cater to specific cell phenotypes and their 

corresponding position as it relates to vessel type, diameter and location.  Location 

specific vascular interrelationships characteristic for the tissue type to be supported by the 

resulting vasculature should be a primary concern for future bio-CAD models.  Structural 
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data must be acquired with the specifications necessary to provide an environment that 

meets the vascular/physiological needs for nurturing the growth and maintenance of 3D 

tissue structures.  This structural environment must be designed to support the needed cell 

behaviors of precise cell types in order to guide genotypical expression and location 

specific structural development.   

In order for such models to be useful in the fabrication of microvascular scaffolding 

for tissue engineering purposes they must include the unique branching pattern seen in 

the capillary beds, nurturing the specialized tissue structure found in organs such as lung, 

kidney and skin.  A vascular tree scaffold is needed whose design mimics the structural 

design of organ specific vascular networks.  A vascular tree scaffold bioengineered both 

chemically and cellularly, to promote the genesis of a replica vascular tree system that 

includes its organ specific capillary structures.  (Mondy and N. De Clerck 2009, In 

Press).  These modeling results are a basis for the further designing of a ‘bio blueprint’ to 

guide using micro-prototyping techniques such as the 3D chemical patterning of photo 

cross linkable multilayered hydrogels (Yu, Kazazian et al. 2007; Elisseeff 2008).  Using 

these methods a more complete structural fabrication of a vascular scaffolding capable to 

support, nurture and guide the celluarization of microvascular and macro vascular 

structures and serve as a nurturing framework.  This framework will support the further 

design and engineering of organ specific, functional tissue structures from chemically and 

mechanically engineered extra cellular matrixes, using micro rapid prototyping and 3D 

laser pulse patterning for the regulation of tissue specific cellular morphologies(Elisseeff, 

Ferran et al. 2006; Linke, Schanz et al. 2007; Garagorri, Fermanian et al. 2008).   
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